Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(30): 17571-17577, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32661153

RESUMO

The development of light-responsive materials has captured scientific attention and advanced the development of wirelessly driven terrestrial soft robots. Marine organisms trigger inspiration to expand the paradigm of untethered soft robotics into aqueous environments. However, this expansion toward aquatic soft robots is hampered by the slow response of most light-driven polymers to low light intensities and by the lack of controlled multishape deformations. Herein, we present a surface-anchored artificial aquatic coral polyp composed of a magnetically driven stem and a light-driven gripper. Through magnetically driven motion, the polyp induces stirring and attracts suspended targets. The light-responsive gripper is sensitive to low light intensities and has programmable states and rapid and highly controlled actuation, allowing the polyp to capture or release targets on demand. The artificial polyp demonstrates that assemblies of stimuli-responsive materials in water utilizing coordinated motion can perform tasks not possible for single-component devices.

2.
Soft Matter ; 15(6): 1435-1443, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30666323

RESUMO

Controlled stirring of a solution is a household task in most laboratories. However, most stirring methods are perturbative or require vessels with predefined shapes and sizes. Here we propose a novel stirring system based on suspended magnetically-actuated pillars (SMAPs), inspired by the ability of biological flagella and cilia to generate flow. We fabricated flexible, millimeter-scale magnetic pillars grafted on transparent polydimethylsiloxane (PDMS) substrates and built a simple actuation setup to control the motion of the pillars remotely. We tested the system with a standard 24-well plate routinely used in most research laboratories and demonstrate that the magnetic actuation results in robust bending of the pillars and large-scale fluid flow in the wells. Quantitative analysis using computational fluid dynamics modeling indicates that the flow profile in the well can be tuned by modulating the applied magnetic field and the geometries of the well and the pillar. Finally, we show that, by employing the stirring system in a standard cell culture plate, we were able to obtain controlled clustering of cells. The SMAP stirring system is therefore a promising cost-effective and scalable stirring approach for various types of studies involving colloids as well as soft and biological materials.


Assuntos
Técnicas de Cultura de Células , Hidrodinâmica , Fenômenos Magnéticos , Biomimética , Técnicas de Cultura de Células/instrumentação , Linhagem Celular Tumoral , Cílios , Dimetilpolisiloxanos , Desenho de Equipamento , Humanos , Compostos de Ferro , Fenômenos Físicos
3.
J Endovasc Ther ; 23(5): 809-20, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27225213

RESUMO

PURPOSE: To quantify the hemodynamic impact of a flared renal stent on the performance of fenestrated stent-grafts (FSGs) by analyzing flow patterns and wall shear stress-derived parameters in flared and nonflared FSGs in different physiologic scenarios. METHODS: Hypothetical models of FSGs were created with and without flaring of the proximal portion of the renal stent. Flared FSGs with different dilation angles and protrusion lengths were examined, as well as a nonplanar flared FSG to account for lumbar curvature. Laminar and pulsatile blood flow was simulated by numerically solving Navier-Stokes equations. A physiologically realistic flow rate waveform was prescribed at the inlet, while downstream vasculature was modeled using a lumped parameter 3-element windkessel model. No slip boundary conditions were imposed at the FSG walls, which were assumed to be rigid. While resting simulations were performed on all the FSGs, exercise simulations were also performed on a flared FSG to quantify the effect of flaring in different physiologic scenarios. RESULTS: For cycle-averaged inflow of 2.94 L/min (rest) and 4.63 L/min (exercise), 27% of blood flow was channeled into each renal branch at rest and 21% under exercise for all the flared FSGs examined. Although the renal flow waveform was not affected by flaring, flow within the flared FSGs was disturbed. This flow disturbance led to high endothelial cell activation potential (ECAP) values at the renal ostia for all the flared geometries. Reducing the dilation angle or protrusion length and exercise lowered the ECAP values for flared FSGs. CONCLUSION: Flaring of renal stents has a negligible effect on the time dependence of renal flow rate waveforms and can maintain sufficient renal perfusion at rest and exercise. Local flow patterns are, however, strongly dependent on renal flaring, which creates a local flow disturbance and may increase the thrombogenicity at the renal ostia. Smaller dilation angles, shorter protrusion lengths, and moderate lower limb exercise are likely to reduce the risk of thrombosis in flared geometries.


Assuntos
Aneurisma da Aorta Abdominal/cirurgia , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Procedimentos Endovasculares/instrumentação , Exercício Físico , Hemodinâmica , Artéria Renal/cirurgia , Descanso , Stents , Aneurisma da Aorta Abdominal/fisiopatologia , Velocidade do Fluxo Sanguíneo , Implante de Prótese Vascular/efeitos adversos , Simulação por Computador , Procedimentos Endovasculares/efeitos adversos , Humanos , Teste de Materiais , Modelos Cardiovasculares , Desenho de Prótese , Artéria Renal/fisiopatologia , Circulação Renal , Trombose/etiologia , Trombose/fisiopatologia , Fatores de Tempo
4.
J Endovasc Ther ; 22(4): 578-90, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25979146

RESUMO

PURPOSE: To report a computational study assessing the hemodynamic outcomes of branched stent-grafts (BSGs) for different anatomic variations. METHODS: Idealized models of BSGs and fenestrated stent-grafts (FSGs) were constructed with different visceral takeoff angles (ToA) and lateral aortic neck angles. ToA was defined as the angle between the centerlines of the main stent-graft and side branch, with 90° representing normal alignment, and 30° and 120° representing angulated side branches. Computational simulations were performed by solving the conservation equations governing the blood flow under physiologically realistic conditions. RESULTS: The largest renal flow recirculation zones (FRZs) were observed in FSGs at a ToA of 30°, and the smallest FRZ was also found in FSGs (at a ToA of 120°). For straight-neck stent-grafts with a ToA of 90°, mean flow in each renal artery was 0.54, 0.46, and 0.62 L/min in antegrade BSGs, retrograde BSGs, and FSGs, respectively. For angulated stent-grafts, the corresponding values were 0.53, 0.48, and 0.63 L/min. All straight-neck stent-grafts experienced equal cycle-averaged displacement forces of 1.25, 1.69, and 1.95 N at ToAs of 30°, 90°, and 120°, respectively. Angulated main stent-grafts experienced an equal cycle-averaged displacement force of 3.6 N. CONCLUSION: The blood flow rate in renal arteries depends on the configuration of the stent-graft, with an FSG giving maximum renal flow and a retrograde BSG resulting in minimum renal flow. Nevertheless, the difference was small, up to 0.09 L/min. Displacement forces exerted on stent-grafts are very sensitive to lateral neck angle but not on the configuration of the stent-graft.


Assuntos
Aneurisma da Aorta Abdominal/fisiopatologia , Aneurisma da Aorta Abdominal/cirurgia , Velocidade do Fluxo Sanguíneo/fisiologia , Implante de Prótese Vascular/métodos , Prótese Vascular , Procedimentos Endovasculares/métodos , Stents , Humanos , Resultado do Tratamento
5.
Int J Numer Method Biomed Eng ; : e3865, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209425

RESUMO

The opening and closing dynamics of the aortic valve (AV) has a strong influence on haemodynamics in the aortic root, and both play a pivotal role in maintaining normal physiological functions of the valve. The aim of this study was to establish a subject-specific fluid-structure interaction (FSI) workflow capable of simulating the motion of a tricuspid healthy valve and the surrounding haemodynamics under physiologically realistic conditions. A subject-specific aortic root was reconstructed from magnetic resonance (MR) images acquired from a healthy volunteer, whilst the valve leaflets were built using a parametric model fitted to the subject-specific aortic root geometry. The material behaviour of the leaflets was described using the isotropic hyperelastic Ogden model, and subject-specific boundary conditions were derived from 4D-flow MR imaging (4D-MRI). Strongly coupled FSI simulations were performed using a finite volume-based boundary conforming method implemented in FlowVision. Our FSI model was able to simulate the opening and closing of the AV throughout the entire cardiac cycle. Comparisons of simulation results with 4D-MRI showed a good agreement in key haemodynamic parameters, with stroke volume differing by 7.5% and the maximum jet velocity differing by less than 1%. Detailed analysis of wall shear stress (WSS) on the leaflets revealed much higher WSS on the ventricular side than the aortic side and different spatial patterns amongst the three leaflets.

6.
Front Cardiovasc Med ; 8: 677977, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124206

RESUMO

Bicuspid aortic valve (BAV) is a congenital defect affecting 1-2% of the general population that is distinguished from the normal tricuspid aortic valve (TAV) by the existence of two, rather than three, functional leaflets (or cusps). BAV presents in different morphologic phenotypes based on the configuration of cusp fusion. The most common phenotypes are Type 1 (containing one raphe), where fusion between right coronary and left coronary cusps (BAV R/L) is the most common configuration followed by fusion between right coronary and non-coronary cusps (BAV R/NC). While anatomically different, BAV R/L and BAV R/NC configurations are both associated with abnormal hemodynamic and biomechanical environments. The natural history of BAV has shown that it is not necessarily the primary structural malformation that enforces the need for treatment in young adults, but the secondary onset of premature calcification in ~50% of BAV patients, that can lead to aortic stenosis. While an underlying genetic basis is a major pathogenic contributor of the structural malformation, recent studies have implemented computational models, cardiac imaging studies, and bench-top methods to reveal BAV-associated hemodynamic and biomechanical alterations that likely contribute to secondary complications. Contributions to the field, however, lack support for a direct link between the external valvular environment and calcific aortic valve disease in the setting of BAV R/L and R/NC BAV. Here we review the literature of BAV hemodynamics and biomechanics and discuss its previously proposed contribution to calcification. We also offer means to improve upon previous studies in order to further characterize BAV and its secondary complications.

7.
J Mech Behav Biomed Mater ; 86: 131-142, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29986288

RESUMO

CoreValve is widely used in transcatheter aortic valve replacement, but the impact of its deployment location on hemodynamics is unexplored despite a potential role in subsequent aortic and coronary artery pathologies. The objectives of this investigation were to perform fluid-structure interaction (FSI) simulations for a 29 mm CoreValve deployed in annular vs supra-annular locations, and characterize resulting hemodynamics including velocity and wall shear stress (WSS). Patient-specific geometry was reconstructed from computed tomography scans and CoreValve was deployed using a finite element approach. FSI simulations were then performed using a boundary conforming method and realistic boundary conditions. Results showed that CoreValve deployment location impacts hemodynamics in the ascending aorta and flow patterns in the coronary arteries. During peak-systole, annularly deployed CoreValve produced a jet-like flow structure impinging on the outer-curvature of the ascending aorta. Supra-annularly deployed CoreValve having a lateral tilt of 10° led to a more centered jet impinging further downstream. At mid-systole, valve leaflets of the annularly deployed CoreValve closed asymmetrically leading to disorganized flow patterns in the ascending aorta vs those from the supra-annular position. Supra-annularly deployed CoreValve also led to high-velocity para-valvular flow supplying the coronary arteries. CoreValve in the supra-annular position significantly (P < 0.05) elevated WSS within the first few diameters of both coronary arteries as compared to the annular position for many time points quantified. These results afforded by the advanced simulation methods may have important clinical implications given the role of aortic hemodynamics in dilation and the pro-atherogenic nature of WSS alterations in the coronary arteries.


Assuntos
Aorta/fisiologia , Vasos Coronários/fisiologia , Próteses Valvulares Cardíacas , Hemodinâmica , Análise de Elementos Finitos , Humanos , Modelagem Computacional Específica para o Paciente
8.
Front Surg ; 3: 35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379242

RESUMO

The aim of this study was to assess the hemodynamic performance of a patient-specific fenestrated stent graft (FSG) under different physiological conditions, including normal resting, hypertension, and hypertension with moderate lower limb exercise. A patient-specific FSG model was constructed from computed tomography images and was discretized into a fine unstructured mesh comprising tetrahedral and prism elements. Blood flow was simulated using Navier-Stokes equations, and physiologically realistic boundary conditions were utilized to yield clinically relevant results. For a given cycle-averaged inflow of 2.08 L/min at normal resting and hypertension conditions, approximately 25% of flow was channeled into each renal artery. When hypertension was combined with exercise, the cycle-averaged inflow increased to 6.39 L/min but only 6.29% of this was channeled into each renal artery, which led to a 438.46% increase in the iliac flow. For all the simulated scenarios and throughout the cardiac cycle, the instantaneous flow streamlines in the FSG were well organized without any notable flow recirculation. This well-organized flow led to low values of endothelial cell activation potential, which is a hemodynamic metric used to identify regions at risk of thrombosis. The displacement forces acting on the FSG varied with the physiological conditions, and the cycle-averaged displacement force at normal rest, hypertension, and hypertension with exercise was 6.46, 8.77, and 8.99 N, respectively. The numerical results from this study suggest that the analyzed FSG can maintain sufficient blood perfusion to the end organs at all the simulated conditions. Even though the FSG was found to have a low risk of thrombosis at rest and hypertension, this risk can be reduced even further with moderate lower limb exercise.

9.
J Biomech ; 47(14): 3546-54, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25267572

RESUMO

Treatment options for abdominal aortic aneurysm (AAA) include highly invasive open surgical repair or minimally invasive endovascular aneurysm repair (EVAR). Despite being minimally invasive, some patients are not suitable for EVAR due to hostile AAA morphology. Fenestrated-EVAR (F-EVAR) was introduced to address these limitations of standard EVAR, where AAA is treated using a Fenestrated Stent Graft (FSG). In order to assess durability of F-EVAR, displacement forces acting on FSGs were analysed in this study, based on patient-specific geometries reconstructed from computed tomography (CT) scans. The magnitude and direction of the resultant displacement forces acting on the FSG were numerically computed using computational fluid dynamics (CFD) with a rigid wall assumption. Although displacement force arises from blood pressure and friction due to blood flow, numerical simulations elucidated that net blood pressure is the dominant contributor to the overall displacement force; as a result, time dependence of the resultant displacement force followed pressure waveform very closely. The magnitude of peak displacement force varied from 1.9N to 14.3N with a median of 7.0N. A strong positive correlation was found between inlet cross-sectional area (CSA), anterior/posterior (A/P) angle and the peak displacement force i.e. as inlet CSA or A/P angle increases, the magnitude of resultant displacement increases. This study manifests that while loads exerted by the pulsatile flow dictates the cyclic variation of the displacement force, its magnitude depends not only on blood pressure but also the FSG morphology, with the latter determining the direction of the displacement force.


Assuntos
Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/terapia , Procedimentos Endovasculares/instrumentação , Hemodinâmica/fisiologia , Hidrodinâmica , Stents , Aneurisma da Aorta Abdominal/fisiopatologia , Pressão Sanguínea/fisiologia , Prótese Vascular , Procedimentos Endovasculares/métodos , Humanos , Modelos Biológicos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA