Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 70(3): 422-434.e6, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29681499

RESUMO

PRC2 is a therapeutic target for several types of cancers currently undergoing clinical trials. Its activity is regulated by a positive feedback loop whereby its terminal enzymatic product, H3K27me3, is specifically recognized and bound by an aromatic cage present in its EED subunit. The ensuing allosteric activation of the complex stimulates H3K27me3 deposition on chromatin. Here we report a stepwise feedback mechanism entailing key residues within distinctive interfacing motifs of EZH2 or EED that are found to be mutated in cancers and/or Weaver syndrome. PRC2 harboring these EZH2 or EED mutants manifested little activity in vivo but, unexpectedly, exhibited similar chromatin association as wild-type PRC2, indicating an uncoupling of PRC2 activity and recruitment. With genetic and chemical tools, we demonstrated that targeting allosteric activation overrode the gain-of-function effect of EZH2Y646X oncogenic mutations. These results revealed critical implications for the regulation and biology of PRC2 and a vulnerability in tackling PRC2-addicted cancers.


Assuntos
Regulação Alostérica/fisiologia , Cromatina/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Anormalidades Múltiplas/metabolismo , Linhagem Celular Tumoral , Hipotireoidismo Congênito/metabolismo , Anormalidades Craniofaciais/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Deformidades Congênitas da Mão/metabolismo , Histonas/metabolismo , Humanos , Neoplasias/metabolismo
2.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36960780

RESUMO

The analysis of super-enhancers (SEs) has recently attracted attention in elucidating the molecular mechanisms of cancer and other diseases. SEs are genomic structures that strongly induce gene expression and have been reported to contribute to the overexpression of oncogenes. Because the analysis of SEs and integrated analysis with other data are performed using large amounts of genome-wide data, artificial intelligence technology, with machine learning at its core, has recently begun to be utilized. In promoting precision medicine, it is important to consider information from SEs in addition to genomic data; therefore, machine learning technology is expected to be introduced appropriately in terms of building a robust analysis platform with a high generalization performance. In this review, we explain the history and principles of SE, and the results of SE analysis using state-of-the-art machine learning and integrated analysis with other data are presented to provide a comprehensive understanding of the current status of SE analysis in the field of medical biology. Additionally, we compared the accuracy between existing machine learning methods on the benchmark dataset and attempted to explore the kind of data preprocessing and integration work needed to make the existing algorithms work on the benchmark dataset. Furthermore, we discuss the issues and future directions of current SE analysis.


Assuntos
Algoritmos , Inteligência Artificial , Aprendizado de Máquina , Genômica , Elementos Facilitadores Genéticos
3.
Mol Cancer ; 23(1): 126, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862995

RESUMO

BACKGROUND: In an extensive genomic analysis of lung adenocarcinomas (LUADs), driver mutations have been recognized as potential targets for molecular therapy. However, there remain cases where target genes are not identified. Super-enhancers and structural variants are frequently identified in several hundred loci per case. Despite this, most cancer research has approached the analysis of these data sets separately, without merging and comparing the data, and there are no examples of integrated analysis in LUAD. METHODS: We performed an integrated analysis of super-enhancers and structural variants in a cohort of 174 LUAD cases that lacked clinically actionable genetic alterations. To achieve this, we conducted both WGS and H3K27Ac ChIP-seq analyses using samples with driver gene mutations and those without, allowing for a comprehensive investigation of the potential roles of super-enhancer in LUAD cases. RESULTS: We demonstrate that most genes situated in these overlapped regions were associated with known and previously unknown driver genes and aberrant expression resulting from the formation of super-enhancers accompanied by genomic structural abnormalities. Hi-C and long-read sequencing data further corroborated this insight. When we employed CRISPR-Cas9 to induce structural abnormalities that mimicked cases with outlier ERBB2 gene expression, we observed an elevation in ERBB2 expression. These abnormalities are associated with a higher risk of recurrence after surgery, irrespective of the presence or absence of driver mutations. CONCLUSIONS: Our findings suggest that aberrant gene expression linked to structural polymorphisms can significantly impact personalized cancer treatment by facilitating the identification of driver mutations and prognostic factors, contributing to a more comprehensive understanding of LUAD pathogenesis.


Assuntos
Adenocarcinoma de Pulmão , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Receptor ErbB-2 , Humanos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Mutação , Biomarcadores Tumorais/genética , Feminino , Masculino , Variação Estrutural do Genoma , Genômica/métodos , Pessoa de Meia-Idade , Prognóstico , Idoso
4.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35788277

RESUMO

The increase in the expectations of artificial intelligence (AI) technology has led to machine learning technology being actively used in the medical field. Non-negative matrix factorization (NMF) is a machine learning technique used for image analysis, speech recognition, and language processing; recently, it is being applied to medical research. Precision medicine, wherein important information is extracted from large-scale medical data to provide optimal medical care for every individual, is considered important in medical policies globally, and the application of machine learning techniques to this end is being handled in several ways. NMF is also introduced differently because of the characteristics of its algorithms. In this review, the importance of NMF in the field of medicine, with a focus on the field of oncology, is described by explaining the mathematical science of NMF and the characteristics of the algorithm, providing examples of how NMF can be used to establish precision medicine, and presenting the challenges of NMF. Finally, the direction regarding the effective use of NMF in the field of oncology is also discussed.


Assuntos
Inteligência Artificial , Medicina de Precisão , Algoritmos , Aprendizado de Máquina
5.
Mol Cell ; 53(2): 290-300, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24374312

RESUMO

JARID2 is an accessory component of Polycomb repressive complex-2 (PRC2) required for the differentiation of embryonic stem cells (ESCs). A role for JARID2 in the recruitment of PRC2 to target genes silenced during differentiation has been put forward, but the molecular details remain unclear. We identified a 30-amino-acid region of JARID2 that mediates interactions with long noncoding RNAs (lncRNAs) and found that the presence of lncRNAs stimulated JARID2-EZH2 interactions in vitro and JARID2-mediated recruitment of PRC2 to chromatin in vivo. Native and crosslinked RNA immunoprecipitations of JARID2 revealed that Meg3 and other lncRNAs from the imprinted Dlk1-Dio3 locus, an important regulator of development, interacted with PRC2 via JARID2. Lack of MEG3 expression in human induced pluripotent cells altered the chromatin distribution of JARID2, PRC2, and H3K27me3. Our findings show that lncRNAs facilitate JARID2-PRC2 interactions on chromatin and suggest a mechanism by which lncRNAs contribute to PRC2 recruitment.


Assuntos
Cromatina/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/fisiologia , RNA não Traduzido/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Proteína Potenciadora do Homólogo 2 de Zeste , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos , Complexo Repressor Polycomb 2/química , RNA Longo não Codificante/metabolismo
6.
Mol Cell ; 53(2): 301-16, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24462204

RESUMO

During X chromosome inactivation (XCI), the Polycomb Repressive Complex 2 (PRC2) is thought to participate in the early maintenance of the inactive state. Although Xist RNA is essential for the recruitment of PRC2 to the X chromosome, the precise mechanism remains unclear. Here, we demonstrate that the PRC2 cofactor Jarid2 is an important mediator of Xist-induced PRC2 targeting. The region containing the conserved B and F repeats of Xist is critical for Jarid2 recruitment via its unique N-terminal domain. Xist-induced Jarid2 recruitment occurs chromosome-wide independently of a functional PRC2 complex, unlike at other parts of the genome, such as CG-rich regions, where Jarid2 and PRC2 binding are interdependent. Conversely, we show that Jarid2 loss prevents efficient PRC2 and H3K27me3 enrichment to Xist-coated chromatin. Jarid2 thus represents an important intermediate between PRC2 and Xist RNA for the initial targeting of the PRC2 complex to the X chromosome during onset of XCI.


Assuntos
Complexo Repressor Polycomb 2/metabolismo , RNA Longo não Codificante/fisiologia , Inativação do Cromossomo X , Cromossomo X/metabolismo , Animais , Mecanismo Genético de Compensação de Dose , Humanos , Camundongos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/fisiologia , RNA Longo não Codificante/metabolismo
7.
Genes Dev ; 28(18): 1983-8, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25170018

RESUMO

Polycomb-repressive complex 2 (PRC2) facilitates the maintenance and inheritance of chromatin domains repressive to transcription through catalysis of methylation of histone H3 at Lys27 (H3K27me2/3). However, through its EZH2 subunit, PRC2 also binds to nascent transcripts from active genes that are devoid of H3K27me2/3 in embryonic stem cells. Here, biochemical analyses indicated that RNA interaction inhibits SET domain-containing proteins, such as PRC2, nonspecifically in vitro. However, CRISPR-mediated truncation of a PRC2-interacting nascent RNA rescued PRC2-mediated deposition of H3K27me2/3. That PRC2 activity is inhibited by interactions with nascent transcripts supports a model in which PRC2 can only mark for repression those genes silenced by transcriptional repressors.


Assuntos
Complexo Repressor Polycomb 2/metabolismo , RNA/metabolismo , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica , Inativação Gênica , Histonas/metabolismo , Camundongos , Complexo Repressor Polycomb 2/genética , Ligação Proteica , Células Sf9
8.
Biochem Biophys Res Commun ; 513(2): 340-346, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30955858

RESUMO

Dysfunction of histone methylation is known to be related to cancer progression. The histone methyltransferase SMYD2 methylates histone protein H3 and non-histone proteins, including poly ADP ribose polymerase 1 (PARP1). There have been reports of SMYD2 overexpression in several types of cancers. However, there are no reports regarding its role in high-grade serous ovarian carcinomas (HGSOCs). Therefore, we investigated the expression profile and conducted functional analysis on SMYD2 in HGSOC cells. In addition, we verified whether SMYD2 inhibition increases the susceptibility of HGSOC cells to PARP inhibitors. We analyzed the expression of histone methyltransferase SMYD2 by quantitative real-time polymerase chain reaction and immunohistochemistry using HGSOC clinical tissues (n = 35). We performed functional analyses, including cell proliferation assay, cell cycle analysis, and immunoblotting, after treatment with SMYD2 siRNAs and SMYD2 selective inhibitor LLY-507 in HGSOC cells. We also performed colony-formation assay after combination treatment with LLY-507 and PARP inhibitor olaparib in HGSOC cells. The expression profiles of SMYD2 showed significant overexpression of SMYD2 in HGSOC clinical tissues. The knockdown or inhibition of SMYD2 by siRNAs or LLY-507, respectively, suppressed cell growth by increasing the proportion of apoptotic cells. LLY-507 showed additive effect with olaparib in the colony-formation assay. These findings suggest that LLY-507 can be used alone or in combination with a PARP inhibitor for the treatment of patients with HGSOC.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Cistadenocarcinoma Seroso/tratamento farmacológico , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Pirrolidinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cistadenocarcinoma Seroso/patologia , Feminino , Histona-Lisina N-Metiltransferase/análise , Humanos , Neoplasias Ovarianas/patologia
9.
BMC Cancer ; 19(1): 455, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092221

RESUMO

BACKGROUND: Wolf-Hirschhorn syndrome candidate gene-1 (WHSC1), a histone methyltransferase, has been found to be upregulated and its expression to be correlated with expression of enhancer of zeste homolog 2 (EZH2) in several cancers. In this study, we evaluated the role of WHSC1 and its therapeutic significance in ovarian clear cell carcinoma (OCCC). METHODS: First, we analyzed WHSC1 expression by quantitative PCR and immunohistochemistry using 23 clinical OCCC specimens. Second, the involvement of WHSC1 in OCCC cell proliferation was evaluated by MTT assays after siRNA-mediated WHSC1 knockdown. We also performed flow cytometry (FACS) to address the effect of WHSC1 on cell cycle. To examine the functional relationship between EZH2 and WHSC1, we knocked down EZH2 using siRNAs and checked the expression levels of WHSC1 and its histone mark H3K36m2 in OCCC cell lines. Finally, we checked WHSC1 expression after treatment with the selective inhibitor, GSK126. RESULTS: Both quantitative PCR and immunohistochemical analysis revealed that WHSC1 was significantly overexpressed in OCCC tissues compared with that in normal ovarian tissues. MTT assay revealed that knockdown of WHSC1 suppressed cell proliferation, and H3K36me2 levels were found to be decreased in immunoblotting. FACS revealed that WHSC1 knockdown affected the cell cycle. We also confirmed that WHSC1 expression was suppressed by EZH2 knockdown or inhibition, indicating that EZH2 is upstream of WHSC1 in OCCC cells. CONCLUSIONS: WHSC1 overexpression induced cell growth and its expression is, at least in part, regulated by EZH2. Further functional analysis will reveal whether WHSC1 is a promising therapeutic target for OCCC.


Assuntos
Adenocarcinoma de Células Claras/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Histona-Lisina N-Metiltransferase/genética , Neoplasias Ovarianas/genética , Proteínas Repressoras/genética , Adenocarcinoma de Células Claras/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Neoplasias Ovarianas/metabolismo , Proteínas Repressoras/metabolismo , Regulação para Cima
10.
Genes Dev ; 24(23): 2615-20, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21123648

RESUMO

Ezh2 functions as a histone H3 Lys 27 (H3K27) methyltransferase when comprising the Polycomb-Repressive Complex 2 (PRC2). Trimethylation of H3K27 (H3K27me3) correlates with transcriptionally repressed chromatin. The means by which PRC2 targets specific chromatin regions is currently unclear, but noncoding RNAs (ncRNAs) have been shown to interact with PRC2 and may facilitate its recruitment to some target genes. Here we show that Ezh2 interacts with HOTAIR and Xist. Ezh2 is phosphorylated by cyclin-dependent kinase 1 (CDK1) at threonine residues 345 and 487 in a cell cycle-dependent manner. A phospho-mimic at residue 345 increased HOTAIR ncRNA binding to Ezh2, while the phospho-mimic at residue 487 was ineffectual. An Ezh2 domain comprising T345 was found to be important for binding to HOTAIR and the 5' end of Xist.


Assuntos
Ciclo Celular/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , RNA não Traduzido/metabolismo , Proteínas Repressoras/metabolismo , Regulação para Cima , Animais , Proteína Quinase CDC2/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Camundongos , Fosforilação , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Ligação Proteica , RNA Longo não Codificante
11.
Exp Mol Med ; 56(3): 646-655, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433247

RESUMO

DNA methylation is an epigenetic modification that results in dynamic changes during ontogenesis and cell differentiation. DNA methylation patterns regulate gene expression and have been widely researched. While tools for DNA methylation analysis have been developed, most of them have focused on intergroup comparative analysis within a dataset; therefore, it is difficult to conduct cross-dataset studies, such as rare disease studies or cross-institutional studies. This study describes a novel method for DNA methylation analysis, namely, methPLIER, which enables interdataset comparative analyses. methPLIER combines Pathway Level Information Extractor (PLIER), which is a non-negative matrix factorization (NMF) method, with regularization by a knowledge matrix and transfer learning. methPLIER can be used to perform intersample and interdataset comparative analysis based on latent feature matrices, which are obtained via matrix factorization of large-scale data, and factor-loading matrices, which are obtained through matrix factorization of the data to be analyzed. We used methPLIER to analyze a lung cancer dataset and confirmed that the data decomposition reflected sample characteristics for recurrence-free survival. Moreover, methPLIER can analyze data obtained via different preprocessing methods, thereby reducing distributional bias among datasets due to preprocessing. Furthermore, methPLIER can be employed for comparative analyses of methylation data obtained from different platforms, thereby reducing bias in data distribution due to platform differences. methPLIER is expected to facilitate cross-sectional DNA methylation data analysis and enhance DNA methylation data resources.


Assuntos
Metilação de DNA , Neoplasias , Humanos , Estudos Transversais , Algoritmos , Epigênese Genética , Neoplasias/genética
12.
Cell Rep ; 42(6): 112519, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37224811

RESUMO

Cancer chemoresistance is often attributed to slow-cycling persister populations with cancer stem cell (CSC)-like features. However, how persister populations emerge and prevail in cancer remains obscure. We previously demonstrated that while the NOX1-mTORC1 pathway is responsible for proliferation of a fast-cycling CSC population, PROX1 expression is required for chemoresistant persisters in colon cancer. Here, we show that enhanced autolysosomal activity mediated by mTORC1 inhibition induces PROX1 expression and that PROX1 induction in turn inhibits NOX1-mTORC1 activation. CDX2, identified as a transcriptional activator of NOX1, mediates PROX1-dependent NOX1 inhibition. PROX1-positive and CDX2-positive cells are present in distinct populations, and mTOR inhibition triggers conversion of the CDX2-positive population to the PROX1-positive population. Inhibition of autophagy synergizes with mTOR inhibition to block cancer proliferation. Thus, mTORC1 inhibition-mediated induction of PROX1 stabilizes a persister-like state with high autolysosomal activity via a feedback regulation that involves a key cascade of proliferating CSCs.


Assuntos
Neoplasias do Colo , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/metabolismo , Retroalimentação , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , NADPH Oxidase 1
13.
Exp Mol Med ; 55(10): 2205-2219, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37779141

RESUMO

High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecological malignancy. To date, the profiles of gene mutations and copy number alterations in HGSOC have been well characterized. However, the patterns of epigenetic alterations and transcription factor dysregulation in HGSOC have not yet been fully elucidated. In this study, we performed integrative omics analyses of a series of stepwise HGSOC model cells originating from human fallopian tube secretory epithelial cells (HFTSECs) to investigate early epigenetic alterations in HGSOC tumorigenesis. Assay for transposase-accessible chromatin using sequencing (ATAC-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and RNA sequencing (RNA-seq) methods were used to analyze HGSOC samples. Additionally, protein expression changes in target genes were confirmed using normal HFTSECs, serous tubal intraepithelial carcinomas (STICs), and HGSOC tissues. Transcription factor motif analysis revealed that the DNA-binding activity of the AP-1 complex and GATA family proteins was dysregulated during early tumorigenesis. The protein expression levels of JUN and FOSL2 were increased, and those of GATA6 and DAB2 were decreased in STIC lesions, which were associated with epithelial-mesenchymal transition (EMT) and proteasome downregulation. The genomic region around the FRA16D site, containing a cadherin cluster region, was epigenetically suppressed by oncogenic signaling. Proteasome inhibition caused the upregulation of chemokine genes, which may facilitate immune evasion during HGSOC tumorigenesis. Importantly, MEK inhibitor treatment reversed these oncogenic alterations, indicating its clinical effectiveness in a subgroup of patients with HGSOC. This result suggests that MEK inhibitor therapy may be an effective treatment option for chemotherapy-resistant HGSOC.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Carcinogênese/genética , Fatores de Transcrição/metabolismo , Epigênese Genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
14.
Nature ; 444(7121): 953-6, 2006 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-17128255

RESUMO

Most eukaryotic messenger RNA precursors (pre-mRNAs) undergo extensive maturational processing, including cleavage and polyadenylation at the 3'-end. Despite the characterization of many proteins that are required for the cleavage reaction, the identity of the endonuclease is not known. Recent analyses indicated that the 73-kDa subunit of cleavage and polyadenylation specificity factor (CPSF-73) might be the endonuclease for this and related reactions, although no direct data confirmed this. Here we report the crystal structures of human CPSF-73 at 2.1 A resolution, complexed with zinc ions and a sulphate that might mimic the phosphate group of the substrate, and the related yeast protein CPSF-100 (Ydh1) at 2.5 A resolution. Both CPSF-73 and CPSF-100 contain two domains, a metallo-beta-lactamase domain and a novel beta-CASP (named for metallo-beta-lactamase, CPSF, Artemis, Snm1, Pso2) domain. The active site of CPSF-73, with two zinc ions, is located at the interface of the two domains. Purified recombinant CPSF-73 possesses RNA endonuclease activity, and mutations that disrupt zinc binding in the active site abolish this activity. Our studies provide the first direct experimental evidence that CPSF-73 is the pre-mRNA 3'-end-processing endonuclease.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/química , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Endonucleases/metabolismo , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Endonucleases/química , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína
15.
Proc Natl Acad Sci U S A ; 106(3): 755-60, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19136632

RESUMO

The CDC73 tumor suppressor gene is mutationally inactivated in hereditary and sporadic parathyroid tumors. Its product, the Cdc73 protein, is a component of the RNA polymerase II and chromatin-associated human Paf1 complex (Paf1C). Here, we show that Cdc73 physically associates with the cleavage and polyadenylation specificity factor (CPSF) and cleavage stimulation factor (CstF) complexes that are required for the maturation of mRNA 3' ends in the cell nucleus. Immunodepletion experiments indicate that the Cdc73-CPSF-CstF complex is necessary for 3' mRNA processing in vitro. Microarray analysis of CDC73 siRNA-treated cells revealed INTS6, a gene encoding a subunit of the Integrator complex, as an in vivo Cdc73 target. Cdc73 depletion by siRNA resulted in decreased INTS6 mRNA abundance, and decreased association of CPSF and CstF subunits with the INTS6 locus. Our results suggest that Cdc73 facilitates association of 3' mRNA processing factors with actively-transcribed chromatin and support the importance of links between tumor suppression and mRNA maturation.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação/fisiologia , Fator Estimulador de Clivagem/fisiologia , RNA Mensageiro/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Fator de Especificidade de Clivagem e Poliadenilação/química , Fator Estimulador de Clivagem/química , Humanos , Proteínas de Ligação a RNA , Proteínas Ribossômicas/genética , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
16.
Biomedicines ; 10(5)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35625819

RESUMO

Endocardial border detection is a key step in assessing left ventricular systolic function in echocardiography. However, this process is still not sufficiently accurate, and manual retracing is often required, causing time-consuming and intra-/inter-observer variability in clinical practice. To address these clinical issues, more accurate and normalized automatic endocardial border detection would be valuable. Here, we develop a deep learning-based method for automated endocardial border detection and left ventricular functional assessment in two-dimensional echocardiographic videos. First, segmentation of the left ventricular cavity was performed in the six representative projections for a cardiac cycle. We employed four segmentation methods: U-Net, UNet++, UNet3+, and Deep Residual U-Net. UNet++ and UNet3+ showed a sufficiently high performance in the mean value of intersection over union and Dice coefficient. The accuracy of the four segmentation methods was then evaluated by calculating the mean value for the estimation error of the echocardiographic indexes. UNet++ was superior to the other segmentation methods, with the acceptable mean estimation error of the left ventricular ejection fraction of 10.8%, global longitudinal strain of 8.5%, and global circumferential strain of 5.8%, respectively. Our method using UNet++ demonstrated the best performance. This method may potentially support examiners and improve the workflow in echocardiography.

17.
Int J Oncol ; 60(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34913069

RESUMO

RNA modifications have attracted increasing interest in recent years because they have been frequently implicated in various human diseases, including cancer, highlighting the importance of dynamic post­transcriptional modifications. Methyltransferase­like 6 (METTL6) is a member of the RNA methyltransferase family that has been identified in many cancers; however, little is known about its specific role or mechanism of action. In the present study, we aimed to study the expression levels and functional role of METTL6 in hepatocellular carcinoma (HCC), and further investigate the relevant pathways. To this end, we systematically conducted bioinformatics analysis of METTL6 in HCC using gene expression data and clinical information from a publicly available dataset. The mRNA expression levels of METTL6 were significantly upregulated in HCC tumor tissues compared to that in adjacent non­tumor tissues and strongly associated with poorer survival outcomes in patients with HCC. CRISPR/Cas9­mediated knockout of METTL6 in HCC cell lines remarkably inhibited colony formation, cell proliferation, cell migration, cell invasion and cell attachment ability. RNA sequencing analysis demonstrated that knockout of METTL6 significantly suppressed the expression of cell adhesion­related genes. However, chromatin immunoprecipitation sequencing results revealed no significant differences in enhancer activities between cells, which suggests that METTL6 may regulate genes of interest post­transcriptionally. In addition, it was demonstrated for the first time that METTL6 was localized in the cytosol as detected by immunofluorescence analysis, which indicates the plausible location of RNA modification mediated by METTL6. Our findings provide further insight into the function of RNA modifications in cancer and suggest a possible role of METTL6 as a therapeutic target in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Moléculas de Adesão Celular/efeitos adversos , tRNA Metiltransferases/efeitos adversos , Carcinoma Hepatocelular/fisiopatologia , Moléculas de Adesão Celular/uso terapêutico , Linhagem Celular , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Regulação para Baixo/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatologia , tRNA Metiltransferases/metabolismo
18.
Commun Biol ; 5(1): 39, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017636

RESUMO

High-grade serous ovarian carcinoma (HGSOC) is the most aggressive gynecological malignancy, resulting in approximately 70% of ovarian cancer deaths. However, it is still unclear how genetic dysregulations and biological processes generate the malignant subtype of HGSOC. Here we show that expression levels of microtubule affinity-regulating kinase 3 (MARK3) are downregulated in HGSOC, and that its downregulation significantly correlates with poor prognosis in HGSOC patients. MARK3 overexpression suppresses cell proliferation and angiogenesis of ovarian cancer cells. The LKB1-MARK3 axis is activated by metabolic stress, which leads to the phosphorylation of CDC25B and CDC25C, followed by induction of G2/M phase arrest. RNA-seq and ATAC-seq analyses indicate that MARK3 attenuates cell cycle progression and angiogenesis partly through downregulation of AP-1 and Hippo signaling target genes. The synthetic lethal therapy using metabolic stress inducers may be a promising therapeutic choice to treat the LKB1-MARK3 axis-dysregulated HGSOCs.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP/genética , Genes Supressores de Tumor , Neoplasias Ovarianas , Proteínas Serina-Treonina Quinases/genética , Estresse Fisiológico/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Epigênese Genética/genética , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
19.
Biomedicines ; 10(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35327353

RESUMO

Diagnostic support tools based on artificial intelligence (AI) have exhibited high performance in various medical fields. However, their clinical application remains challenging because of the lack of explanatory power in AI decisions (black box problem), making it difficult to build trust with medical professionals. Nevertheless, visualizing the internal representation of deep neural networks will increase explanatory power and improve the confidence of medical professionals in AI decisions. We propose a novel deep learning-based explainable representation "graph chart diagram" to support fetal cardiac ultrasound screening, which has low detection rates of congenital heart diseases due to the difficulty in mastering the technique. Screening performance improves using this representation from 0.966 to 0.975 for experts, 0.829 to 0.890 for fellows, and 0.616 to 0.748 for residents in the arithmetic mean of area under the curve of a receiver operating characteristic curve. This is the first demonstration wherein examiners used deep learning-based explainable representation to improve the performance of fetal cardiac ultrasound screening, highlighting the potential of explainable AI to augment examiner capabilities.

20.
Clin Epigenetics ; 14(1): 147, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371227

RESUMO

BACKGROUND: Proline/arginine-rich end leucine-rich repeat protein (PRELP) is a member of the small leucine-rich proteoglycan family of extracellular matrix proteins, which is markedly suppressed in the majority of early-stage epithelial cancers and plays a role in regulating the epithelial-mesenchymal transition by altering cell-cell adhesion. Although PRELP is an important factor in the development and progression of bladder cancer, the mechanism of PRELP gene repression remains unclear. RESULTS: Here, we show that repression of PRELP mRNA expression in bladder cancer cells is alleviated by HDAC inhibitors (HDACi) through histone acetylation. Using ChIP-qPCR analysis, we found that acetylation of lysine residue 5 of histone H2B in the PRELP gene promoter region is a marker for the de-repression of PRELP expression. CONCLUSIONS: These results suggest a mechanism through which HDACi may partially regulate the function of PRELP to suppress the development and progression of bladder cancer. Some HDACi are already in clinical use, and the findings of this study provide a mechanistic basis for further investigation of HDACi-based therapeutic strategies.


Assuntos
Histonas , Neoplasias da Bexiga Urinária , Humanos , Histonas/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Lisina/metabolismo , Glicoproteínas/genética , Acetilação , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Metilação de DNA , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA