Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(13): 3559-3572.e22, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34115981

RESUMO

Spatial barcoding technologies have the potential to reveal histological details of transcriptomic profiles; however, they are currently limited by their low resolution. Here, we report Seq-Scope, a spatial barcoding technology with a resolution comparable to an optical microscope. Seq-Scope is based on a solid-phase amplification of randomly barcoded single-molecule oligonucleotides using an Illumina sequencing platform. The resulting clusters annotated with spatial coordinates are processed to expose RNA-capture moiety. These RNA-capturing barcoded clusters define the pixels of Seq-Scope that are ∼0.5-0.8 µm apart from each other. From tissue sections, Seq-Scope visualizes spatial transcriptome heterogeneity at multiple histological scales, including tissue zonation according to the portal-central (liver), crypt-surface (colon) and inflammation-fibrosis (injured liver) axes, cellular components including single-cell types and subtypes, and subcellular architectures of nucleus and cytoplasm. Seq-Scope is quick, straightforward, precise, and easy-to-implement and makes spatial single-cell analysis accessible to a wide group of biomedical researchers.


Assuntos
Microscopia , Transcriptoma/genética , Animais , Núcleo Celular/genética , Colo/patologia , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Inflamação/genética , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , RNA/metabolismo , Análise de Célula Única
2.
Nature ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38768635

RESUMO

Rare coding variants that significantly impact function provide insights into the biology of a gene1-3. However, ascertaining their frequency requires large sample sizes4-8. Here, we present a catalogue of human protein-coding variation, derived from exome sequencing of 983,578 individuals across diverse populations. 23% of the Regeneron Genetics Center Million Exome data (RGC-ME) comes from non-European individuals of African, East Asian, Indigenous American, Middle Eastern, and South Asian ancestry. This catalogue includes over 10.4 million missense and 1.1 million predicted loss-of-function (pLOF) variants. We identify individuals with rare biallelic pLOF variants in 4,848 genes, 1,751 of which have not been previously reported. From precise quantitative estimates of selection against heterozygous loss-of-function, we identify 3,988 loss-of-function intolerant genes, including 86 that were previously assessed as tolerant and 1,153 lacking established disease annotation. We also define regions of missense depletion at high resolution. Notably, 1,482 genes have regions depleted of missense variants despite being tolerant to pLOF variants. Finally, we estimate that 3% of individuals have a clinically actionable genetic variant, and that 11,773 variants reported in ClinVar with unknown significance are likely to be deleterious cryptic splice sites. To facilitate variant interpretation and genetics-informed precision medicine, we make this important resource of coding variation from the RGC-ME accessible via a public variant allele frequency browser.

3.
Nature ; 622(7982): 329-338, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37794186

RESUMO

The Pharma Proteomics Project is a precompetitive biopharmaceutical consortium characterizing the plasma proteomic profiles of 54,219 UK Biobank participants. Here we provide a detailed summary of this initiative, including technical and biological validations, insights into proteomic disease signatures, and prediction modelling for various demographic and health indicators. We present comprehensive protein quantitative trait locus (pQTL) mapping of 2,923 proteins that identifies 14,287 primary genetic associations, of which 81% are previously undescribed, alongside ancestry-specific pQTL mapping in non-European individuals. The study provides an updated characterization of the genetic architecture of the plasma proteome, contextualized with projected pQTL discovery rates as sample sizes and proteomic assay coverages increase over time. We offer extensive insights into trans pQTLs across multiple biological domains, highlight genetic influences on ligand-receptor interactions and pathway perturbations across a diverse collection of cytokines and complement networks, and illustrate long-range epistatic effects of ABO blood group and FUT2 secretor status on proteins with gastrointestinal tissue-enriched expression. We demonstrate the utility of these data for drug discovery by extending the genetic proxied effects of protein targets, such as PCSK9, on additional endpoints, and disentangle specific genes and proteins perturbed at loci associated with COVID-19 susceptibility. This public-private partnership provides the scientific community with an open-access proteomics resource of considerable breadth and depth to help to elucidate the biological mechanisms underlying proteo-genomic discoveries and accelerate the development of biomarkers, predictive models and therapeutics1.


Assuntos
Bancos de Espécimes Biológicos , Proteínas Sanguíneas , Bases de Dados Factuais , Genômica , Saúde , Proteoma , Proteômica , Humanos , Sistema ABO de Grupos Sanguíneos/genética , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/genética , COVID-19/genética , Descoberta de Drogas , Epistasia Genética , Fucosiltransferases/metabolismo , Predisposição Genética para Doença , Plasma/química , Pró-Proteína Convertase 9/metabolismo , Proteoma/análise , Proteoma/genética , Parcerias Público-Privadas , Locos de Características Quantitativas , Reino Unido , Galactosídeo 2-alfa-L-Fucosiltransferase
4.
Nature ; 604(7906): 509-516, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35396579

RESUMO

Rare coding variation has historically provided the most direct connections between gene function and disease pathogenesis. By meta-analysing the whole exomes of 24,248 schizophrenia cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in 10 genes as conferring substantial risk for schizophrenia (odds ratios of 3-50, P < 2.14 × 10-6) and 32 genes at a false discovery rate of <5%. These genes have the greatest expression in central nervous system neurons and have diverse molecular functions that include the formation, structure and function of the synapse. The associations of the NMDA (N-methyl-D-aspartate) receptor subunit GRIN2A and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor subunit GRIA3 provide support for dysfunction of the glutamatergic system as a mechanistic hypothesis in the pathogenesis of schizophrenia. We observe an overlap of rare variant risk among schizophrenia, autism spectrum disorders1, epilepsy and severe neurodevelopmental disorders2, although different mutation types are implicated in some shared genes. Most genes described here, however, are not implicated in neurodevelopment. We demonstrate that genes prioritized from common variant analyses of schizophrenia are enriched in rare variant risk3, suggesting that common and rare genetic risk factors converge at least partially on the same underlying pathogenic biological processes. Even after excluding significantly associated genes, schizophrenia cases still carry a substantial excess of URVs, which indicates that more risk genes await discovery using this approach.


Assuntos
Mutação , Transtornos do Neurodesenvolvimento , Esquizofrenia , Estudos de Casos e Controles , Exoma , Predisposição Genética para Doença/genética , Humanos , Transtornos do Neurodesenvolvimento/genética , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/genética
5.
Nature ; 590(7845): 290-299, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568819

RESUMO

The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.


Assuntos
Variação Genética/genética , Genoma Humano/genética , Genômica , National Heart, Lung, and Blood Institute (U.S.) , Medicina de Precisão , Citocromo P-450 CYP2D6/genética , Haplótipos/genética , Heterozigoto , Humanos , Mutação INDEL , Mutação com Perda de Função , Mutagênese , Fenótipo , Polimorfismo de Nucleotídeo Único , Densidade Demográfica , Medicina de Precisão/normas , Controle de Qualidade , Tamanho da Amostra , Estados Unidos , Sequenciamento Completo do Genoma/normas
6.
Nature ; 570(7759): 71-76, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31118516

RESUMO

Protein-coding genetic variants that strongly affect disease risk can yield relevant clues to disease pathogenesis. Here we report exome-sequencing analyses of 20,791 individuals with type 2 diabetes (T2D) and 24,440 non-diabetic control participants from 5 ancestries. We identify gene-level associations of rare variants (with minor allele frequencies of less than 0.5%) in 4 genes at exome-wide significance, including a series of more than 30 SLC30A8 alleles that conveys protection against T2D, and in 12 gene sets, including those corresponding to T2D drug targets (P = 6.1 × 10-3) and candidate genes from knockout mice (P = 5.2 × 10-3). Within our study, the strongest T2D gene-level signals for rare variants explain at most 25% of the heritability of the strongest common single-variant signals, and the gene-level effect sizes of the rare variants that we observed in established T2D drug targets will require 75,000-185,000 sequenced cases to achieve exome-wide significance. We propose a method to interpret these modest rare-variant associations and to incorporate these associations into future target or gene prioritization efforts.


Assuntos
Diabetes Mellitus Tipo 2/genética , Sequenciamento do Exoma , Exoma/genética , Animais , Estudos de Casos e Controles , Técnicas de Apoio para a Decisão , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Camundongos Knockout
7.
PLoS Genet ; 18(1): e1009571, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100255

RESUMO

Transcriptome wide association studies (TWAS) can be used as a powerful method to identify and interpret the underlying biological mechanisms behind GWAS by mapping gene expression levels with phenotypes. In TWAS, gene expression is often imputed from individual-level genotypes of regulatory variants identified from external resources, such as Genotype-Tissue Expression (GTEx) Project. In this setting, a straightforward approach to impute expression levels of a specific tissue is to use the model trained from the same tissue type. When multiple tissues are available for the same subjects, it has been demonstrated that training imputation models from multiple tissue types improves the accuracy because of shared eQTLs between the tissues and increase in effective sample size. However, existing joint-tissue methods require access of genotype and expression data across all tissues. Moreover, they cannot leverage the abundance of various expression datasets across various tissues for non-overlapping individuals. Here, we explore the optimal way to combine imputed levels across training models from multiple tissues and datasets in a flexible manner using summary-level data. Our proposed method (SWAM) combines arbitrary number of transcriptome imputation models to linearly optimize the imputation accuracy given a target tissue. By integrating models across tissues and/or individuals, SWAM can improve the accuracy of transcriptome imputation or to improve power to TWAS while only requiring individual-level data from a single reference cohort. To evaluate the accuracy of SWAM, we combined 49 tissue-specific gene expression imputation models from the GTEx Project as well as from a large eQTL study of Depression Susceptibility Genes and Networks (DGN) Project and tested imputation accuracy in GEUVADIS lymphoblastoid cell lines samples. We also extend our meta-imputation method to meta-TWAS to leverage multiple tissues in TWAS analysis with summary-level statistics. Our results capitalize on the importance of integrating multiple tissues to unravel regulatory impacts of genetic variants on complex traits.


Assuntos
Conjuntos de Dados como Assunto , Genótipo , Modelos Genéticos , Transcriptoma , Estudo de Associação Genômica Ampla/métodos , Humanos , Análise da Randomização Mendeliana , Locos de Características Quantitativas
8.
Genome Res ; 30(2): 185-194, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31980570

RESUMO

Detecting and estimating DNA sample contamination are important steps to ensure high-quality genotype calls and reliable downstream analysis. Existing methods rely on population allele frequency information for accurate estimation of contamination rates. Correctly specifying population allele frequencies for each individual in early stage of sequence analysis is impractical or even impossible for large-scale sequencing centers that simultaneously process samples from multiple studies across diverse populations. On the other hand, incorrectly specified allele frequencies may result in substantial bias in estimated contamination rates. For example, we observed that existing methods often fail to identify 10% contaminated samples at a typical 3% contamination exclusion threshold when genetic ancestry is misspecified. Such an incomplete screening of contaminated samples substantially inflates the estimated rate of genotyping errors even in deeply sequenced genomes and exomes. We propose a robust statistical method that accurately estimates DNA contamination and is agnostic to genetic ancestry of the intended or contaminating sample. Our method integrates the estimation of genetic ancestry and DNA contamination in a unified likelihood framework by leveraging individual-specific allele frequencies projected from reference genotypes onto principal component coordinates. Our method can also be used for estimating genetic ancestries, similar to LASER or TRACE, but simultaneously accounting for potential contamination. We demonstrate that our method robustly estimates contamination rates and genetic ancestries across populations and contamination scenarios. We further demonstrate that, in the presence of contamination, genetic ancestry inference can be substantially biased with existing methods that ignore contamination, while our method corrects for such biases.


Assuntos
Contaminação por DNA , DNA/genética , Genótipo , Técnicas de Genotipagem/normas , Alelos , Exoma/genética , Frequência do Gene/genética , Genética Populacional , Humanos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
9.
Bioinformatics ; 38(2): 559-561, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34459872

RESUMO

SUMMARY: Expression quantitative trait loci (eQTLs) characterize the associations between genetic variation and gene expression to provide insights into tissue-specific gene regulation. Interactive visualization of tissue-specific eQTLs or splice QTLs (sQTLs) can facilitate our understanding of functional variants relevant to disease-related traits. However, combining the multi-dimensional nature of eQTLs/sQTLs into a concise and informative visualization is challenging. Existing QTL visualization tools provide useful ways to summarize the unprecedented scale of transcriptomic data but are not necessarily tailored to answer questions about the functional interpretations of trait-associated variants or other variants of interest. We developed FIVEx, an interactive eQTL/sQTL browser with an intuitive interface tailored to the functional interpretation of associated variants. It features the ability to navigate seamlessly between different data views while providing relevant tissue- and locus-specific information to offer users a better understanding of population-scale multi-tissue transcriptomic profiles. Our implementation of the FIVEx browser on the EBI eQTL catalogue, encompassing 16 publicly available RNA-seq studies, provides important insights for understanding potential tissue-specific regulatory mechanisms underlying trait-associated signals. AVAILABILITY AND IMPLEMENTATION: A FIVEx instance visualizing EBI eQTL catalogue data can be found at https://fivex.sph.umich.edu. Its source code is open source under an MIT license at https://github.com/statgen/fivex. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla/métodos , Perfilação da Expressão Gênica/métodos , Software , Transcriptoma
10.
PLoS Genet ; 16(12): e1009060, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33320851

RESUMO

Gene-based association tests aggregate genotypes across multiple variants for each gene, providing an interpretable gene-level analysis framework for genome-wide association studies (GWAS). Early gene-based test applications often focused on rare coding variants; a more recent wave of gene-based methods, e.g. TWAS, use eQTLs to interrogate regulatory associations. Regulatory variants are expected to be particularly valuable for gene-based analysis, since most GWAS associations to date are non-coding. However, identifying causal genes from regulatory associations remains challenging and contentious. Here, we present a statistical framework and computational tool to integrate heterogeneous annotations with GWAS summary statistics for gene-based analysis, applied with comprehensive coding and tissue-specific regulatory annotations. We compare power and accuracy identifying causal genes across single-annotation, omnibus, and annotation-agnostic gene-based tests in simulation studies and an analysis of 128 traits from the UK Biobank, and find that incorporating heterogeneous annotations in gene-based association analysis increases power and performance identifying causal genes.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Anotação de Sequência Molecular/métodos , Algoritmos , Estudo de Associação Genômica Ampla/normas , Humanos , Anotação de Sequência Molecular/normas , Polimorfismo Genético , Locos de Características Quantitativas , Reprodutibilidade dos Testes
11.
Gastroenterology ; 160(4): 1164-1178.e6, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33058866

RESUMO

BACKGROUND AND AIMS: Susceptibility genes and the underlying mechanisms for the majority of risk loci identified by genome-wide association studies (GWAS) for colorectal cancer (CRC) risk remain largely unknown. We conducted a transcriptome-wide association study (TWAS) to identify putative susceptibility genes. METHODS: Gene-expression prediction models were built using transcriptome and genetic data from the 284 normal transverse colon tissues of European descendants from the Genotype-Tissue Expression (GTEx), and model performance was evaluated using data from The Cancer Genome Atlas (n = 355). We applied the gene-expression prediction models and GWAS data to evaluate associations of genetically predicted gene-expression with CRC risk in 58,131 CRC cases and 67,347 controls of European ancestry. Dual-luciferase reporter assays and knockdown experiments in CRC cells and tumor xenografts were conducted. RESULTS: We identified 25 genes associated with CRC risk at a Bonferroni-corrected threshold of P < 9.1 × 10-6, including genes in 4 novel loci, PYGL (14q22.1), RPL28 (19q13.42), CAPN12 (19q13.2), MYH7B (20q11.22), and MAP1L3CA (20q11.22). In 9 known GWAS-identified loci, we uncovered 9 genes that have not been reported previously, whereas 4 genes remained statistically significant after adjusting for the lead risk variant of the locus. Through colocalization analysis in GWAS loci, we additionally identified 12 putative susceptibility genes that were supported by TWAS analysis at P < .01. We showed that risk allele of the lead risk variant rs1741640 affected the promoter activity of CABLES2. Knockdown experiments confirmed that CABLES2 plays a vital role in colorectal carcinogenesis. CONCLUSIONS: Our study reveals new putative susceptibility genes and provides new insight into the biological mechanisms underlying CRC development.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Predisposição Genética para Doença , Modelos Genéticos , Alelos , Carcinogênese/genética , Estudos de Casos e Controles , Estudos de Coortes , Neoplasias Colorretais/epidemiologia , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , RNA-Seq , Fatores de Risco , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Bioinformatics ; 37(22): 4248-4250, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33989384

RESUMO

SUMMARY: The sparse allele vectors file format is an efficient storage format for large-scale DNA variation data and is designed for high throughput association analysis by leveraging techniques for fast deserialization of data into computer memory. A command line interface has been developed to complement the storage format and supports basic features like importing, exporting and subsetting. Additionally, a C++ programming API is available allowing for easy integration into analysis software. AVAILABILITY AND IMPLEMENTATION: https://github.com/statgen/savvy. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Alelos
13.
Bioinformatics ; 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33760063

RESUMO

MOTIVATION: There are high demands for joint genotyping of structural variations with short-read sequencing, but efficient and accurate genotyping in population scale is a challenging task. RESULTS: We developed muCNV that aggregates per-sample summary pileups for joint genotyping of > 100,000 samples. Pilot results show very low Mendelian inconsistencies. Applications to large-scale projects in cloud show the computational efficiencies of muCNV genotyping pipeline. AVAILABILITY: muCNV is publicly available for download at: https://github.com/gjun/muCNV. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

14.
Mol Psychiatry ; 26(9): 5239-5250, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33483695

RESUMO

Bipolar disorder (BD) is a serious mental illness with substantial common variant heritability. However, the role of rare coding variation in BD is not well established. We examined the protein-coding (exonic) sequences of 3,987 unrelated individuals with BD and 5,322 controls of predominantly European ancestry across four cohorts from the Bipolar Sequencing Consortium (BSC). We assessed the burden of rare, protein-altering, single nucleotide variants classified as pathogenic or likely pathogenic (P-LP) both exome-wide and within several groups of genes with phenotypic or biologic plausibility in BD. While we observed an increased burden of rare coding P-LP variants within 165 genes identified as BD GWAS regions in 3,987 BD cases (meta-analysis OR = 1.9, 95% CI = 1.3-2.8, one-sided p = 6.0 × 10-4), this enrichment did not replicate in an additional 9,929 BD cases and 14,018 controls (OR = 0.9, one-side p = 0.70). Although BD shares common variant heritability with schizophrenia, in the BSC sample we did not observe a significant enrichment of P-LP variants in SCZ GWAS genes, in two classes of neuronal synaptic genes (RBFOX2 and FMRP) associated with SCZ or in loss-of-function intolerant genes. In this study, the largest analysis of exonic variation in BD, individuals with BD do not carry a replicable enrichment of rare P-LP variants across the exome or in any of several groups of genes with biologic plausibility. Moreover, despite a strong shared susceptibility between BD and SCZ through common genetic variation, we do not observe an association between BD risk and rare P-LP coding variants in genes known to modulate risk for SCZ.


Assuntos
Transtorno Bipolar , Esquizofrenia , Transtorno Bipolar/genética , Exoma/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética
15.
Am J Respir Crit Care Med ; 203(4): 424-436, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32966749

RESUMO

Rationale: The 17q12-21.1 locus is one of the most highly replicated genetic associations with asthma. Individuals of African descent have lower linkage disequilibrium in this region, which could facilitate identifying causal variants.Objectives: To identify functional variants at 17q12-21.1 associated with early-onset asthma among African American individuals.Methods: We evaluated African American participants from SAPPHIRE (Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-Ethnicity) (n = 1,940), SAGE II (Study of African Americans, Asthma, Genes and Environment) (n = 885), and GCPD-A (Study of the Genetic Causes of Complex Pediatric Disorders-Asthma) (n = 2,805). Associations with asthma onset at ages under 5 years were meta-analyzed across cohorts. The lead signal was reevaluated considering haplotypes informed by genetic ancestry (i.e., African vs. European). Both an expression-quantitative trait locus analysis and a phenome-wide association study were performed on the lead variant.Measurements and Main Results: The meta-analyzed results from SAPPHIRE, SAGE II, and the GCPD-A identified rs11078928 as the top association for early-onset asthma. A haplotype analysis suggested that the asthma association partitioned most closely with the rs11078928 genotype. Genetic ancestry did not appear to influence the effect of this variant. In the expression-quantitative trait locus analysis, rs11078928 was related to alternative splicing of GSDMB (gasdermin-B) transcripts. The phenome-wide association study of rs11078928 suggested that this variant was predominantly associated with asthma and asthma-associated symptoms.Conclusions: A splice-acceptor polymorphism appears to be a causal variant for asthma at the 17q12-21.1 locus. This variant appears to have the same magnitude of effect in individuals of African and European descent.


Assuntos
Negro ou Afro-Americano/genética , Cromossomos Humanos Par 17 , Estudos de Associação Genética , Predisposição Genética para Doença/genética , População Branca/genética , Adolescente , Adulto , Idade de Início , Asma/genética , Criança , Pré-Escolar , Mapeamento Cromossômico , Feminino , Variação Genética , Humanos , Lactente , Recém-Nascido , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Estados Unidos , Adulto Jovem
16.
Gut ; 70(7): 1325-1334, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33632709

RESUMO

OBJECTIVE: An understanding of the etiologic heterogeneity of colorectal cancer (CRC) is critical for improving precision prevention, including individualized screening recommendations and the discovery of novel drug targets and repurposable drug candidates for chemoprevention. Known differences in molecular characteristics and environmental risk factors among tumors arising in different locations of the colorectum suggest partly distinct mechanisms of carcinogenesis. The extent to which the contribution of inherited genetic risk factors for CRC differs by anatomical subsite of the primary tumor has not been examined. DESIGN: To identify new anatomical subsite-specific risk loci, we performed genome-wide association study (GWAS) meta-analyses including data of 48 214 CRC cases and 64 159 controls of European ancestry. We characterised effect heterogeneity at CRC risk loci using multinomial modelling. RESULTS: We identified 13 loci that reached genome-wide significance (p<5×10-8) and that were not reported by previous GWASs for overall CRC risk. Multiple lines of evidence support candidate genes at several of these loci. We detected substantial heterogeneity between anatomical subsites. Just over half (61) of 109 known and new risk variants showed no evidence for heterogeneity. In contrast, 22 variants showed association with distal CRC (including rectal cancer), but no evidence for association or an attenuated association with proximal CRC. For two loci, there was strong evidence for effects confined to proximal colon cancer. CONCLUSION: Genetic architectures of proximal and distal CRC are partly distinct. Studies of risk factors and mechanisms of carcinogenesis, and precision prevention strategies should take into consideration the anatomical subsite of the tumour.


Assuntos
Colo , Neoplasias do Colo/genética , Heterogeneidade Genética , Neoplasias Retais/genética , Adulto , Distribuição por Idade , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Alelos , Estudos de Casos e Controles , Ceco , Colo Ascendente , Colo Descendente , Colo Sigmoide , Colo Transverso , Neoplasias do Colo/diagnóstico , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Neoplasias Retais/diagnóstico , Fatores de Risco , População Branca/genética , Adulto Jovem
17.
Am J Physiol Endocrinol Metab ; 320(2): E244-E258, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33103450

RESUMO

During nutritional overload and obesity, hepatocyte function is grossly altered, and a subset of hepatocytes begins to accumulate fat droplets, leading to nonalcoholic fatty liver disease (NAFLD). Recent single-cell studies revealed how nonparenchymal cells, such as macrophages, hepatic stellate cells, and endothelial cells, heterogeneously respond to NAFLD. However, it remains to be characterized how hepatocytes, the major constituents of the liver, respond to nutritional overload in NAFLD. Here, using droplet-based, single-cell RNA sequencing (Drop-seq), we characterized how the transcriptomic landscape of individual hepatocytes is altered in response to high-fat diet (HFD) and NAFLD. We showed that the entire hepatocyte population undergoes substantial transcriptome changes upon HFD, although the patterns of alteration were highly heterogeneous, with zonation-dependent and -independent effects. Periportal (zone 1) hepatocytes downregulated many zone 1-specific marker genes, whereas a small number of genes mediating gluconeogenesis were upregulated. Pericentral (zone 3) hepatocytes also downregulated many zone 3-specific genes; however, they upregulated several genes that promote HFD-induced fat droplet formation, consistent with findings that zone 3 hepatocytes accumulate more lipid droplets. Zone 3 hepatocytes also upregulated ketogenic pathways as an adaptive mechanism to HFD. Interestingly, many of the top HFD-induced genes, which encode proteins regulating lipid metabolism, were strongly co-expressed with each other in a subset of hepatocytes, producing a variegated pattern of spatial co-localization that is independent of metabolic zonation. In conclusion, our data set provides a useful resource for understanding hepatocellular alteration during NAFLD at single cell level.


Assuntos
Dieta Hiperlipídica , Gorduras na Dieta/farmacologia , Hepatócitos , Transcriptoma/efeitos dos fármacos , Animais , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Análise de Célula Única/métodos , Magreza/genética , Magreza/metabolismo , Magreza/patologia
18.
Nature ; 526(7571): 68-74, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26432245

RESUMO

The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.


Assuntos
Variação Genética/genética , Genética Populacional/normas , Genoma Humano/genética , Genômica/normas , Internacionalidade , Conjuntos de Dados como Assunto , Demografia , Suscetibilidade a Doenças , Exoma/genética , Genética Médica , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação INDEL/genética , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Doenças Raras/genética , Padrões de Referência , Análise de Sequência de DNA
19.
Bioinformatics ; 35(1): 164-166, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30204848

RESUMO

Summary: Estimating linkage disequilibrium (LD) is essential for a wide range of summary statistics-based association methods for genome-wide association studies. Large genetic datasets, e.g. the TOPMed WGS project and UK Biobank, enable more accurate and comprehensive LD estimates, but increase the computational burden of LD estimation. Here, we describe emeraLD (Efficient Methods for Estimation and Random Access of LD), a computational tool that leverages sparsity and haplotype structure to estimate LD up to 2 orders of magnitude faster than current tools. Availability and implementation: emeraLD is implemented in C++, and is open source under GPLv3. Source code and documentation are freely available at http://github.com/statgen/emeraLD. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Software , Biologia Computacional , Haplótipos
20.
Plant Physiol ; 179(4): 1444-1456, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718350

RESUMO

Single-cell RNA sequencing (scRNA-seq) has been used extensively to study cell-specific gene expression in animals, but it has not been widely applied to plants. Here, we describe the use of a commercially available droplet-based microfluidics platform for high-throughput scRNA-seq to obtain single-cell transcriptomes from protoplasts of more than 10,000 Arabidopsis (Arabidopsis thaliana) root cells. We find that all major tissues and developmental stages are represented in this single-cell transcriptome population. Further, distinct subpopulations and rare cell types, including putative quiescent center cells, were identified. A focused analysis of root epidermal cell transcriptomes defined developmental trajectories for individual cells progressing from meristematic through mature stages of root-hair and nonhair cell differentiation. In addition, single-cell transcriptomes were obtained from root epidermis mutants, enabling a comparative analysis of gene expression at single-cell resolution and providing an unprecedented view of the impact of the mutated genes. Overall, this study demonstrates the feasibility and utility of scRNA-seq in plants and provides a first-generation gene expression map of the Arabidopsis root at single-cell resolution.


Assuntos
Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Análise de Célula Única , Transcriptoma , Arabidopsis/citologia , Estudos de Viabilidade , Epiderme Vegetal/metabolismo , Raízes de Plantas/citologia , Protoplastos/metabolismo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA