Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Pharmacol Res ; 158: 104852, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32438038

RESUMO

Secoisolariciresinol diglucoside (SDG) is the main phytoestrogen component of flaxseed known as an antioxidant. Current study focused on the effect of SDG in white adipose tissue (WAT) browning. Browning of WAT is considered as a promising treatment strategy for metabolic diseases. To demonstrate the effect of SDG as an inducer of browning, brown adipocyte markers were investigated in inguinal WAT (iWAT) of high fat diet-fed obese mice and genetically obese db/db mice after SDG administration. SDG increased thermogenic factors such as uncoupling protein 1, peroxisome proliferator-activated receptor gamma coactivator 1 alpha and PR domain containing 16 in iWAT and brown adipose tissue (BAT) of mice. Similar results were shown in beige-induced 3T3-L1 adipocytes and primary cultured brown adipocytes. Furthermore, SDG increased factors of mitochondrial biogenesis and activation. We also observed SDG-induced alteration of AMP-activated protein kinase α (AMPKα). As AMPKα is closely related in the regulation of adipogenesis and thermogenesis, we then evaluated the effect of SDG in AMPKα-inhibited conditions. Genetic or chemical inhibition of AMPKα demonstrated that the role of SDG on browning and thermogenesis was dependent on AMPKα signaling. In conclusion, our data suggest SDG as a potential candidate for improvement of obesity and other metabolic disorders.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Butileno Glicóis/farmacologia , Glucosídeos/farmacologia , Fitoestrógenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Células 3T3-L1 , Adipócitos Marrons/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Biogênese de Organelas
2.
FASEB J ; 32(3): 1388-1402, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29141998

RESUMO

Energy expenditure is a target gaining recent interest for obesity treatment. The antiobesity effect of vanillic acid (VA), a well-known flavoring agent, was investigated in vivo and in vitro. High-fat diet (HFD)-induced obese mice and genetically obese db/db mice showed significantly decreased body weights after VA administration. Two major adipogenic markers, peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), were reduced while the key factor of energy metabolism, AMPKα, was increased in the white adipose tissue and liver tissue of VA-treated mice. Furthermore, VA inhibited lipid accumulation and reduced hepatotoxic/inflammatory markers in liver tissues of mice and HepG2 hepatocytes. VA treatment also decreased differentiation of 3T3-L1 adipocytes by regulating adipogenic factors including PPARγ and C/EBPα. AMPKα small interfering RNA was used to examine whether AMPK was associated with the actions of VA. In AMPKα-nulled 3T3-L1 cells, the inhibitory action of VA on PPARγ and C/EBPα was attenuated. Furthermore, in brown adipose tissues of mice and primary cultured brown adipocytes, VA increased mitochondria- and thermogenesis-related factors such as uncoupling protein 1 and PPARγ-coactivator 1-α. Taken together, our results suggest that VA has potential as an AMPKα- and thermogenesis-activating antiobesity agent.-Jung, Y., Park, J., Kim, H.-L., Sim, J.-E., Youn, D.-H., Kang, J., Lim, S., Jeong, M.-Y., Yang, W. M., Lee, S.-G., Ahn, K. S., Um, J.-Y. Vanillic acid attenuates obesity via activation of the AMPK pathway and thermogenic factors in vivo and in vitro.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipogenia/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Obesidade/tratamento farmacológico , Termogênese/efeitos dos fármacos , Ácido Vanílico/farmacologia , Células 3T3-L1 , Tecido Adiposo Marrom/patologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Ativação Enzimática/efeitos dos fármacos , Masculino , Camundongos , Obesidade/metabolismo , Obesidade/patologia , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
3.
J Cell Biochem ; 117(9): 2067-77, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26852013

RESUMO

Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti-inflammation, anti-cancer, and antioxidant, there have been no reports on the anti-obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti-obesity effect and mediates the AMP-activated protein kinase (AMPK) pathway. We investigated the anti-adipogenic effect of ARC using 3T3-L1 pre-adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). In high-fat diet (HFD)-induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD-induced obese mice. ARC also inhibited the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down-modulation of adipogenesis-related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067-2077, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Gorduras na Dieta/efeitos adversos , Furanos/farmacologia , Lignanas/farmacologia , Obesidade , Redução de Peso/efeitos dos fármacos , Células 3T3-L1 , Animais , Gorduras na Dieta/farmacologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Obesidade/metabolismo
4.
Biomolecules ; 10(8)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722030

RESUMO

Obesity is known to be associated with risk and aggressiveness of cancer. Melanoma, the most lethal type of skin cancer, is also closely related to the prevalence of obesity. In this study, we established a cancer-obesity comorbidity (COC) model to investigate the effects of vanillic acid (VA). After a five-week administration with a high-fat diet (HFD) to induce obesity, subcutaneous allograft of B16BL6 cells were followed, and VA was orally administrated for an additional two weeks. VA-fed mice showed significantly decreased body weight and white adipose tissue (WAT) weight, which were due to increased thermogenesis and AMPK activation in WATs. Growth of cancer was also suppressed. Mechanistic studies revealed increased apoptosis and autophagy markers by VA; however, caspase 3 was not involved. Since signal transducer and activator of transcription 3 (STAT3) is suggested as an important pathway linking obesity and cancer, we further investigated to find out if STAT3 phosphorylation was repressed by VA treatment, and this was again confirmed in a COC cell model of adipocyte conditioned medium-treated B16BL6 melanoma cells. Overall, our results show VA induces STAT3-mediated autophagy to inhibit cancer growth and thermogenesis to ameliorate obesity in COC. Based on these findings, we suggest VA as a candidate therapeutic agent for COC treatment.


Assuntos
Melanoma Experimental/prevenção & controle , Obesidade/prevenção & controle , Fator de Transcrição STAT3/metabolismo , Ácido Vanílico/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Autofagia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Dieta Hiperlipídica/efeitos adversos , Lipólise/efeitos dos fármacos , Masculino , Melanoma Experimental/complicações , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/complicações , Obesidade/etiologia , Tamanho do Órgão/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Termogênese/efeitos dos fármacos
5.
Front Pharmacol ; 10: 1458, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920651

RESUMO

Atopic dermatitis (AD) is an inflammatory disease of the skin, resulting from an immune dysfunction, that often occurs as a comorbidity of obesity. This investigation evaluated the capacity of Taeumjowi-tang (TJT), a Korean herbal formulation from the Sasang medical tradition to influence prognostic features of AD and obesity in a mouse model. Here, obesity and AD were induced by a high-fat diet (HFD) and 1-fluoro-2,4-dinitrobenzene (DNFB). Following an 8-week HFD regimen and 4 weeks of DNFB administration, the comorbid (CO) group manifested increased body weight and AD-like lesions, as compared to normal control (NC) mice, while TJT administration diminished these symptoms of obesity and AD. Specifically, TJT treatment reduced epidermal thickness and eosinophil/mast cell infiltration, along with reduction in immunoglobulin E, interleukin (IL)-4, IL-6, and tumor necrosis factor-alpha (TNF-α). It was additionally demonstrated that TJT suppresses HFD/DNFB-associated increase of the inflammation-related nuclear factor-kappa beta (NF-κB) and mitogen activated protein kinase. Moreover, significantly increased levels of hypoxia inducible factor-1 alpha (HIF-1α) protein was observed in CO group versus controls, an increase significantly down-regulated by TJT-treatment. These outcomes suggest that TJT may prove useful in clinical management of obesity-AD comorbidity treatment, an effect that may be due to regulation of HIF-1α expression.

8.
Front Pharmacol ; 9: 773, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30061836

RESUMO

Benign prostate hyperplasia (BPH) is a common disease in elderly men, characterized by proliferated prostate and urinary tract symptoms. The hormonal cascade starting by the action of 5-alpha-reductase (5AR) is known to be one of the pathways responsible for the pathogenesis of BPH. Present investigation evaluated the capacity of berberine (BBR), a nature-derived compound abundant in Coptis japonica, in testosterone-induced BPH rats. Experimental BPH was induced by inguinal injection with testosterone propionate (TP) for 4 weeks. BBR or finasteride, a 5AR inhibitor as positive control, was treated for 4 weeks during BPH. BPH induced by TP evoked weight gaining and histological changes of prostate and BBR treatment improved all the detrimental effects not only weight reduction and histological changes but also suppression of prostate-specific antigen (PSA), which is elevated during BPH. Additionally, BBR suppressed TP-associated increase of 5AR, androgen receptor (AR) and steroid coactivator-1 (SRC-1), the key factors in the pathogenesis of BPH. To evaluate the underlying molecular mechanisms responsible for beneficial effects of BBR, we investigated whether these effects were associated with the mitogen-activated protein kinase pathway. BPH induced by TP showed increased phosphorylation of extracellular signal-regulated kinase (ERK), whereas this was suppressed by BBR treatment. On the other hand, c-jun-N-terminal kinase (JNK) and p38 mitogen-activated protein kinase was not changed in BPH rats. In in vitro study using RWPE-1 cells, a human prostate epithelial cell line. TP increased cell proliferation and BPH-related key factors such as PSA, AR, and 5AR in RWPE-1 cells, and those factors were significantly decreased in the presence of BBR. Furthermore, these proliferative effects in RWPE-1cells were attenuated by treatment with U0126, an ERK inhibitor, confirming BBR can relieve overgrowth of prostate via ERK-dependent signaling. The cotreatment of U0126 and BBR did not affect the change of 5AR nor proliferation compared with U0126 alone, suggesting that the effect of BBR was dependent on the action of ERK. In conclusion, this study shows that BBR can be used as a therapeutic agent for BPH by controlling hyperplasia of prostate through suppression of ERK mechanism.

9.
Eur J Pharmacol ; 820: 235-244, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29269018

RESUMO

Flaxseeds are used to treat metabolic diseases such as type 2 diabetes, fatty liver, hyperlipidemia and obesity. Secoisolariciresinol diglucoside (SDG) is a main substance of lignan which belongs to the phytoestrogen family and exists abundantly in flaxseeds. In this study, SDG reduced the body weight and size of adipose tissue, and decreased protein expressions of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (C/EBPα) in the high fat diet-fed-induced obese mice model. In the vitro study, we examined the anti-adipogenic effect of SDG during differentiation of 3T3-L1 cells into adipocytes. 3T3-L1 preadipocytes were differentiated and treated with various concentrations of SDG. Oil Red O staining was done to measure the quantity of lipid contents. As a result, SDG reduced lipid accumulation and decreased the expressions of adipogenic-related genes such as adipocyte fatty-acid-binding protein 2, adiponectin, and resistin. SDG also decreased the mRNA and protein levels of PPARγ and C/EBPα. Furthermore, phosphorylation levels of AMP-activated protein kinase α (AMPK α) and its upstream activator, liver kinase B1, were significantly increased by SDG in 3T3-L1 cells. These results suggest that SDG inhibits adipogenesis by activating AMPKα, suggesting it could be an attractive therapeutic candidate for the treatment of obesity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipogenia/efeitos dos fármacos , Butileno Glicóis/farmacologia , Glucosídeos/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Butileno Glicóis/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Glucosídeos/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
10.
Oncotarget ; 8(50): 87194-87208, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29152074

RESUMO

Benign prostatic hyperplasia (BPH) is a common disease in the male population, especially in elderly men. Vanillic acid (VA), a dihydroxybenzoic derivative used as a flavoring agent, is reported to have an anti-inflammatory effect. However, there are no reports of its effects on BPH to date. BPH was induced with a pre-4-week treatment of daily subcutaneous injections of testosterone propionate (TP), and the normal control group received injections of ethanol with corn oil instead. Six weeks of further injections were done with (a) ethanol with corn oil, (b) TP only, (c) TP + finasteride, and (d) TP + VA. Finasteride was used as a positive control group. VA had protective effects on the TP-induced BPH. In the VA treatment group, the prostate weight was reduced, and the histological changes including the epithelial thickness and lumen area were restored like in the normal control group. Furthermore, in the VA treatment group, two proliferation related factors, high molecular weight cytokeratin 34ßE12 and α smooth muscle actin, were significantly down-regulated compared to the TP-induced BPH group. The expressions of dihydrotestosterone and 5α-reductase, the most crucial factors in BPH development, were suppressed by VA treatment. Expressions of the androgen receptor, estrogen receptor α and steroid receptor coactivator 1 were also significantly inhibited by VA compared to the TP-induced BPH group. In addition, we established an in vitro model for BPH by treating a normal human prostatic epithelial cell line RWPE-1 with TP. VA successfully inhibited proliferation and BPH-related factors in a concentration-dependent manner in this newly established model. These results suggest a new and potential pharmaceutical therapy of VA in the treatment of BPH.

11.
Oncotarget ; 8(6): 9500-9512, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-27880726

RESUMO

Benign prostatic hyperplasia (BPH) is one of the most common chronic diseases in male population, of which incidence increases gradually with age. In this study, we investigated the effect of chrysophanic acid (CA) on BPH. BPH was induced by a 4-week injection of testosterone propionate (TP). Four weeks of further injection with vehicle, TP, TP + CA, TP + finasteride was carried on. In the CA treatment group, the prostate weight was reduced and the TP-induced histological changes were restored as the normal control group. CA treatment suppressed the TP-elevated prostate specific antigen (PSA) expression. In addition, 5α-reductase, a crucial factor in BPH development, was suppressed to the normal level close to the control group by CA treatment. The elevated expressions of androgen receptor (AR), estrogen receptor α and steroid receptor coactivator 1 by TP administration were also inhibited in the CA group when compared to the TP-induced BPH group. Then we evaluated the changes in three major factors of the mitogen-activated protein kinase chain during prostatic hyperplasia; extracellular signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38). While ERK was elevated in the process of BPH, JNK and p38 was not changed. This up-regulated ERK was also reduced as normal by CA treatment. Further in vitro studies with RWPE-1 cells confirmed TP-induced proliferation and elevated AR, PSA and p-ERK were all reduced by CA treatment. Overall, these results suggest a potential pharmaceutical feature of CA in the treatment of BPH.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Inibidores de 5-alfa Redutase/farmacologia , Antraquinonas/farmacologia , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Próstata/efeitos dos fármacos , Hiperplasia Prostática/prevenção & controle , Propionato de Testosterona , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Receptor alfa de Estrogênio/metabolismo , Finasterida/farmacologia , Masculino , Coativador 1 de Receptor Nuclear/metabolismo , Tamanho do Órgão , Fosforilação , Próstata/enzimologia , Próstata/patologia , Antígeno Prostático Específico/metabolismo , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/enzimologia , Hiperplasia Prostática/patologia , Ratos Sprague-Dawley , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
12.
Metabolism ; 73: 85-99, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28732574

RESUMO

OBJECTIVE: Brown adipose tissue (BAT) activation has been identified as a possible target to treat obesity and to protect against metabolic diseases by increasing energy consumption. We explored whether albiflorin (AF), a natural compound, could contribute to lowering the high risk of obesity with BAT and primary brown preadipocytes in vivo and in vitro. MATERIALS/METHODS: Human adipose tissue-derived mesenchymal stem cells (hAMSCs) were cultured with adipogenic differentiation media with or without AF. Male C57BL/6J mice (n=5 per group) were fed a high-fat diet (HFD) for six weeks with or without AF. Brown preadipocytes from the interscapular BAT of mice were cultured with or without AF. RESULTS: In white adipogenic differentiation of hAMSCs, AF treatment significantly reduced the formation of lipid droplets and the expression of adipogenesis-related genes. In HFD-induced obese C57BL/6J mice, AF treatment significantly reduced body weight gain as well as the weights of the white adipose tissue, liver and spleen. Furthermore, AF induced the expression of genes involved in thermogenic function in BAT. In primary brown adipocytes, AF effectively stimulated the expressions of thermogenic genes and markedly up-regulated the AMP-activated protein kinase (AMPK) signaling pathway. Pretreatment with phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 nullified the induction of the thermogenic genes by AF in primary brown adipocytes. Moreover, AF activated beige cell marker genes induced by the pharmacological activation of peroxisome proliferator-activated receptor γ in hAMSCs. CONCLUSION: This study shows that AF prevents the development of obesity in hAMSCs and mice fed an HFD and that it is also capable of stimulating the differentiation of brown adipocytes through the modulation of thermogenic genes by AMPK and PI3K/AKT.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Células-Tronco Mesenquimais/citologia , Obesidade/tratamento farmacológico , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Termogênese/genética , Adipócitos Marrons/efeitos dos fármacos , Tecido Adiposo/citologia , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Diferenciação Celular , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ativação Transcricional
13.
Front Pharmacol ; 8: 654, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033835

RESUMO

Brown adipocytes dissipate energy as heat and hence have an important therapeutic capacity for obesity. Development of brown-like adipocytes (also called beige) is also another attractive target for obesity treatment. Here, we investigated the effect of farnesol, an isoprenoid, on adipogenesis in adipocytes and on the browning of white adipose tissue (WAT) as well as on the weight gain of high-fat diet (HFD)-induced obese mice. Farnesol inhibited adipogenesis and the related key regulators including peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α through the up-regulation of AMP-activated protein kinase in 3T3-L1 murine adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). Farnesol markedly increased the expression of uncoupling protein 1 and PPARγ coactivator 1 α in differentiated hAMSCs. In addition, farnesol limited the weight gain in HFD obese mice and induced the development of beige adipocytes in both inguinal and epididymal WAT. These results suggest that farnesol could be a potential therapeutic agent for obesity treatment.

14.
Sci Rep ; 6: 31906, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27549514

RESUMO

Cinnamomi cortex (dried bark of Cinnamomum verum) is an important drug in Traditional Korean Medicine used to improve blood circulation and Yang Qi. Benign prostatic hyperplasia (BPH) is a common chronic disease in aging men. This study was conducted to determine the effect of Cinnamomi cortex water extract (CC) on BPH. BPH was induced by a pre-4-week daily injection of testosterone propionate (TP). Six weeks of further injection with (a) vehicle, (b) TP, (c) TP + CC, (d) TP + finasteride (Fi) was carried on. As a result, the prostate weight and prostatic index of the CC treatment group were reduced. Histological changes including epithelial thickness and lumen area were recovered as normal by CC treatment. The protein expressions of prostate specific antigen, estrogen receptor α (ERα), androgen receptor (AR), 5α-reductase (5AR), and steroid receptor coactivator 1 were suppressed by treatment of CC. Immunohistochemical assays supported the western blot results, as the expressions of AR and ERα were down-regulated by CC treatment as well. Further in vitro experiments showed CC was able to inhibit proliferation of RWPE-1 cells by suppressing 5AR and AR. These results all together suggest CC as a potential treatment for BPH.


Assuntos
Colestenona 5 alfa-Redutase/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Próstata/efeitos dos fármacos , Hiperplasia Prostática/prevenção & controle , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cinnamomum zeylanicum/química , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Masculino , Fitoterapia/métodos , Próstata/metabolismo , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/metabolismo , Ratos Sprague-Dawley , Receptores Androgênicos/metabolismo , Propionato de Testosterona
15.
Am J Chin Med ; 44(3): 565-78, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27109161

RESUMO

Rutin, also called rutoside or quercetin-3-O-rutinoside and sophorin, is a glycoside between the flavonol quercetin and the disaccharide rutinose. Although many effects of rutin have been reported in vitro and in vivo, the anti-adipogenic effects of rutin have not been fully reported. The aim of this study was to confirm how rutin regulates adipocyte related factors. In this study, rutin decreased the expressions of adipogenesis-related genes, including peroxisome proliferators, activated receptor [Formula: see text] (PPAR[Formula: see text], CCAAT/enhancer-binding protein [Formula: see text] (C/EBP[Formula: see text], fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase in 3T3-L1 cells. Rutin also repressed the expression of lipin1, which is an upstream regulator that controls PPAR[Formula: see text] and C/EBP[Formula: see text]. In addition, when 3T3-L1 was transfected with lipin1 siRNA to block lipin1 function, rutin did not affect the expressions of PPAR[Formula: see text] and C/EBP[Formula: see text]. These results suggest that rutin has an anti-adipogenic effect that acts through the suppression of lipin1, as well as PPAR[Formula: see text] and C/EBP[Formula: see text].


Assuntos
Adipogenia/efeitos dos fármacos , Adipogenia/genética , Proteínas Nucleares/fisiologia , Fosfatidato Fosfatase/fisiologia , Rutina/farmacologia , Células 3T3 , Proteínas Quinases Ativadas por AMP/fisiologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Camundongos , Proteínas Nucleares/antagonistas & inibidores , PPAR gama/genética , PPAR gama/metabolismo , Fosfatidato Fosfatase/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
16.
Front Pharmacol ; 7: 476, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28008317

RESUMO

Chrysophanic acid (CA) is a member of the anthraquinone family abundant in rhubarb, a widely used herb for obesity treatment in Traditional Korean Medicine. Though several studies have indicated numerous features of CA, no study has yet reported the effect of CA on obesity. In this study, we tried to identify the anti-obesity effects of CA. By using 3T3-L1 adipocytes and primary cultured brown adipocytes as in vitro models, high-fat diet (HFD)-induced obese mice, and zebrafish as in vivo models, we determined the anti-obesity effects of CA. CA reduced weight gain in HFD-induced obese mice. They also decreased lipid accumulation and the expressions of adipogenesis factors including peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in 3T3-L1 adipocytes. In addition, uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), the brown fat specific thermogenic genes, were up-regulated in brown adipocytes by CA treatment. Furthermore, when co-treated with Compound C, the AMP-activated protein kinase (AMPK) inhibitor, the action of CA on AMPKα was nullified in both types of adipocytes, indicating the multi-controlling effect of CA was partially via the AMPKα pathway. Given all together, these results indicate that CA can ameliorate obesity by controlling the adipogenic and thermogenic pathway at the same time. On these bases, we suggest the new potential of CA as an anti-obese pharmacotherapy.

17.
Artigo em Inglês | MEDLINE | ID: mdl-27143989

RESUMO

This study was performed in order to investigate the antiobese effects of the ethanolic extract of Veratri Nigri Rhizoma et Radix (VN), a herb with limited usage, due to its toxicology. An HPLC analysis identified jervine as a constituent of VN. By an Oil Red O assay and a Real-Time RT-PCR assay, VN showed higher antiadipogenic effects than jervine. In high-fat diet- (HFD-) induced obese C57BL/6J mice, VN administration suppressed body weight gain. The levels of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT-enhancer-binding protein alpha (C/EBPα), adipocyte fatty-acid-binding protein (aP2), adiponectin, resistin, and LIPIN1 were suppressed by VN, while SIRT1 was upregulated. Furthermore, VN activated phosphorylation of the liver kinase B1- (LKB1-) AMP-activated protein kinase alpha- (AMPKα-) acetyl CoA carboxylase (ACC) axis. Further investigation of cotreatment of VN with the AMPK agonist AICAR or AMPK inhibitor Compound C showed that VN can activate the phosphorylation of AMPKα in compensation to the inhibition of Compound C. In conclusion, VN shows antiobesity effects in HFD-induced obese C57BL/6J mice. In 3T3-L1 adipocytes, VN has antiadipogenic features, which is due to activating the LKB1-AMPKα-ACC axis. These results suggest that VN has a potential benefit in preventing obesity.

18.
J Agric Food Chem ; 63(35): 7721-30, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26244589

RESUMO

This study was designed to evaluate the effects of Platycodon grandiflorum A. DC. ethanolic extract (PG) on obesity in brown/white preadipocytes. The effect of PG on the differentiation and mitochondrial biogenesis of brown adipocytes is still not examined. An in vivo study showed that PG induced weight loss in mice with high-fat-diet-induced obesity. PG successfully suppressed the differentiation of 3T3-L1 cells by down-regulating cellular induction of the peroxisome proliferators activated receptor γ (PPARγ), CCAAT enhancer binding protein α (C/EBPα), lipin-1, and adiponectin but increasing expression of silent mating type information regulation 2 homologue 1 (SIRT1) and the phosphorylation of AMP-activated protein kinase α (AMPKα). The effect of PG on the adipogenic factors was compared with that of its bioactive compound platycodin D. In addition, PG increased expressions of mitochondria-related genes, including uncoupling protein 1 (UCP1), peroxisome proliferator activated receptor-coactivator 1 α (PGC1α), PR domain containing 16 (PRDM16), SIRT3, nuclear respiratory factor (NRF), and cytochrome C (CytC) in primary brown adipocytes. These results indicate that PG stimulates the differentiation of brown adipocytes through modulation of mitochondria-related genes and could offer clinical benefits as a supplement to treat obesity.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Obesidade/fisiopatologia , Extratos Vegetais/farmacologia , Platycodon/química , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Humanos , Masculino , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação
19.
Mol Med Rep ; 12(3): 3549-3556, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26005209

RESUMO

Ulcerative colitis (UC) is a type of inflammatory bowel disease and is considered a chronic gastrointestinal disorder. Igongsan (IGS) is a Korean herbal medicine, which has been used to treat digestive disorders. However, the ameliorative effect and molecular mechanisms of IGS in intestinal inflammation have not yet been studied in detail. The present study aimed to investigate the protective effects of IGS and its constituent, ergosterol, in a mouse model of dextran sulfate sodium (DSS)­induced colitis. Colitis was induced in mice by supplementing their drinking water with 5% (w/v) DSS for 7 days. The effects of IGS were then determined on DSS­induced clinical signs of colitis, including weight loss, colon shortening, diarrhea and obscure/gross bleeding. In addition, the effects of IGS were determined on the expression levels of inflammation­associated genes in the colon tissue of DSS­treated mice. The results of the present study demonstrated that mice treated with DSS exhibited marked clinical symptoms, including weight loss and reduced colon length. Treatment with IGS attenuated these symptoms and also suppressed the expression levels of tumor necrosis factor­α and interleukin­6, as well as the expression of cyclooxygenase­2 in the colon tissue of DSS­treated mice. IGS also reduced the activation of the transcription factor nuclear factor­κB p65 in the colon tissue of DSS­treated mice. In addition, ergosterol was shown to attenuate the DSS­induced clinical symptoms of colitis in mice. In conclusion, the present study provided experimental evidence that IGS may be a useful therapeutic drug for patients with UC.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Sulfato de Dextrana , Ergosterol/uso terapêutico , Animais , Anti-Inflamatórios/química , Colite/imunologia , Colite/patologia , Colo/imunologia , Colo/patologia , Ciclo-Oxigenase 2/análise , Ciclo-Oxigenase 2/imunologia , Dinoprostona/análise , Dinoprostona/imunologia , Ergosterol/química , Feminino , Interleucina-6/análise , Interleucina-6/imunologia , Medicina Tradicional Coreana , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/análise , NF-kappa B/imunologia , Plantas Medicinais/química , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/imunologia
20.
Am J Chin Med ; 43(4): 731-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26119957

RESUMO

In this study, we found that alpha-pinene (α-pinene) exhibits anti-inflammatory activity through the suppression of mitogen-activated protein kinases (MAPKs) and the nuclear factor-kappa B (NF-κB) pathway in mouse peritoneal macrophages. α-Pinene is found in the oils of many coniferous trees and rosemary. We investigated the inhibitory effects of α-Pinene on inflammatory responses induced by lipopolysaccharide (LPS) using mouse peritoneal macrophages. α-Pinene significantly decreased the LPS-induced production of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide (NO). α-Pinene also inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions in LPS-stimulated macrophages. Additionally, the activations of MAPKs and NF-κB were attenuated by means of α-pinene treatment. These results indicate that α-pinene has an anti-inflammatory effect and that it is a potential candidate as a new drug to treat various inflammatory diseases.


Assuntos
Anti-Inflamatórios , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Macrófagos Peritoneais/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Monoterpenos/farmacologia , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Monoterpenos Bicíclicos , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Depressão Química , Inflamação/tratamento farmacológico , Inflamação/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/antagonistas & inibidores , Masculino , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Monoterpenos/uso terapêutico , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA