Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 352: 132-141, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29792947

RESUMO

Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) can preferentially initiate apoptosis in malignant cells with minimal toxicity to normal cells. Unfortunately, many human cancer cells are refractory to TRAIL-induced apoptosis through many unknown mechanisms. Here, we report that TRAIL resistance can be reversed in human bladder cancer cell lines by treatment with sulforaphane (SFN), a well-known chemopreventive isothiocyanate in various cruciferous vegetables. Combined treatment with SFN and TRAIL (SFN/TRAIL) significantly induced apoptosis concomitant with activation of caspases, loss of mitochondrial membrane potential (MMP), Bid truncation, and induction of death receptor 5. Transient knockdown of Bid prevented collapse of MMP induced by SFN/TRAIL, consequently reducing apoptotic effects. Furthermore, SFN increased both the generation of reactive oxygen species (ROS) and the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), which is an anti-oxidant enzyme. Interestingly, TRAIL effectively suppressed SFN-mediated nuclear translocation of Nrf2, and the period of ROS generation was more extended compared to that of treatment with SFN alone. In addition, silencing of Nrf2 increased apoptosis in cells treated with SFN/TRAIL; however, blockade of ROS generation inhibited apoptotic activity. These data suggest that SFN-induced ROS generation promotes TRAIL sensitivity and SFN can be used for the management of TRAIL-resistant cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Isotiocianatos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fator 2 Relacionado a NF-E2/genética , Transdução de Sinais/efeitos dos fármacos , Sulfóxidos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
2.
Mar Drugs ; 11(2): 418-30, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23389088

RESUMO

The cytotoxic effects and mechanism of action of clerosterol, isolated from the marine alga Codium fragile, were investigated in A2058 human melanoma cells. Clerosterol inhibited the growth of A2058 cells with an IC(50) of 150 µM and induced apoptotic cell death, as evidenced by DNA fragmentation, an increase in the number of sub-G(1) hypodiploid cells and the presence of apoptotic bodies. Clerosterol treatment caused the loss of mitochondrial membrane potential. Alterations in the expression of apoptosis-associated proteins in response to clerosterol treatment included upregulation of Bax, downregulation of Bcl-2 and activation of caspases 3 and 9. The pan-caspase inhibitor treatment attenuated the expression of the active form of caspases and cell death induced by clerosterol. The present results show that clerosterol exerts its cytotoxic effect in A2058 human melanoma cells by caspases-dependent apoptosis.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Clorófitas/química , Melanoma/tratamento farmacológico , Esteroides/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Apoptose/efeitos dos fármacos , Caspases/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Clorófitas/metabolismo , Ativação Enzimática , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Coloração e Rotulagem , Esteroides/química , Esteroides/metabolismo
3.
Toxicol Appl Pharmacol ; 259(1): 87-95, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22200406

RESUMO

Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Capsaicina/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Fator de Transcrição Sp1/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Western Blotting , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Imunoprecipitação da Cromatina , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Luciferases/genética , Plasmídeos , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Transfecção , Regulação para Cima
4.
FEBS Lett ; 582(23-24): 3263-9, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18775701

RESUMO

In this study, we found that pectenotoxin-2 (PTX-2) decreased cell viability and inhibited telomerase activity with downregulation of hTERT expression in human leukemia cells. PTX-2 treatment also reduced c-Myc and Sp1 gene expression and DNA binding activity. Further chromatin immunoprecipitation assay demonstrated that PTX-2 attenuated the binding of c-Myc and Sp1 to the regulatory regions of hTERT. We also observed that PTX-2 treatment attenuated the phosphorylation of Akt, thereby reducing the phosphorylation and nuclear translocation of hTERT. We concluded that PTX-2 suppressed telomerase activity through the transcriptional and post-translational suppression of hTERT and this process precedes cellular differentiation of human leukemia cells.


Assuntos
Apoptose , Furanos/farmacologia , Expressão Gênica/efeitos dos fármacos , Piranos/farmacologia , Telomerase/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Imunoprecipitação da Cromatina , Humanos , Leucemia/metabolismo , Macrolídeos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Transcrição Sp1/metabolismo , Telomerase/genética
5.
Food Chem Toxicol ; 50(8): 2605-11, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22617349

RESUMO

Recent studies have shown that apigenin (4',5,7-trihydroxyflavone inhibits human malignant cancer cell growth through cell cycle arrest and apoptosis. However, the underlying relationship between apoptosis and telomerase activity in response to apigenin exposure is not well understood. In this study, we found that apigenin significantly induces direct cytotoxicity in human leukemia cells (U937, THP-1 and HL60) through activation of the caspase pathway. As we presumed, treatment with apigenin was found to increase the level of intracellular reactive oxygen species (ROS), whereas pretreatment with antioxidants, N-acetyl-cysteine (NAC) or glutathione (GSH), completely attenuated ROS generation. Surprisingly, these antioxidants did not promote recuperation from apigenin-induced cell death. We further showed that apigenin downregulates telomerase activity in caspase-dependent apoptosis and observed that apigenin dosing results in downregulation of telomerase activity by suppression of c-Myc-mediated telomerase reverse transcriptase (hTERT) expression. In addition, treatment of apigenin-dosed cells with the two antioxidants did not restore telomerase activity. Taken together, this data suggests that ROS is not essential for suppression of apigenin-mediated apoptosis associated with the activation of caspases and regulation of telomerase activity via suppression of hTERT. We conclude that apigenin has a direct cytotoxic effect and the loss of telomerase activity in leukemia cells.


Assuntos
Acetilcisteína/farmacologia , Apigenina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Leucemia/patologia , Telomerase/metabolismo , Apoptose/efeitos dos fármacos , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Glutationa/farmacologia , Humanos , Leucemia/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Telomerase/antagonistas & inibidores
6.
Cancer Lett ; 292(1): 111-8, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20022690

RESUMO

Nuclear factor-kappa B (NF-kappaB) activation by tumor necrosis factor-alpha (TNF-alpha) attenuates the TNF-alpha-induced apoptosis pathway. Thus, blockage of NF-kappaB activity may improve the anti-cancer activity of TNF-alpha. HA14-1 induces apoptosis in various human cancer cells, and the molecular mechanisms of this action remain to be fully characterized. The present study evaluated the involvement of NF-kappaB, reactive oxygen species (ROS), and c-Jun N-terminal kinase (JNK) in the effects of HA14-1 by examining the sensitization effect on TNF-alpha-induced apoptosis in human leukemia cells. Such sensitization is closely associated with the inhibitory effect of HA14-1 on TNF-alpha-mediated NF-kappaB activation. HA14-1 suppressed NF-kappaB activation through inhibition of phosphorylation and degradation of IkappaBalpha. This inhibition was correlated with suppression of NF-kappaB-dependent gene products (c-myc, cyclin D1, cox-2, and IAP-1). Additionally, the present findings provide evidence of a critical role of ROS accumulation induced by HA14-1 in TNF-alpha-induced apoptosis. Moreover, HA14-1 also markedly sustained TNF-alpha-mediated JNK activation. A specific JNK inhibitor abolished the sensitization effect of HA14-1 on TNF-alpha-induced apoptosis. Taken together, these results indicate that ROS and JNK represent important signals in HA14-1 sensitization in TNF-alpha-induced apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Benzopiranos/farmacologia , Leucemia/metabolismo , Leucemia/patologia , MAP Quinase Quinase 4/metabolismo , NF-kappa B/antagonistas & inibidores , Nitrilas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Linhagem Celular Tumoral , DNA de Neoplasias/metabolismo , Ativação Enzimática , Humanos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Cancer Lett ; 295(2): 260-6, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20451318

RESUMO

Sulforaphane (SFN), a dietary isothiocyanate, is a well known natural product that possesses anti-cancer and chemopreventive activities. However, the molecular mechanism of the anti-telomerase activity of SFN is not well understood. In this study, we investigated the hypothesis that SFN inhibits cell viability and telomerase activity via downregulation of telomerase reverse transcriptase (hTERT) expression. We suggest that elevated intracellular reactive oxygen species (ROS) levels, due to exposure to SFN, has a critical role in abolishing since pretreatment with NAC, an antioxidant, resulted in the recovery of hTERT expression. SFN also suppressed the phosphorylation of Akt (Ser-473), thereby inhibiting hTERT phosphorylation and this effect was reversed by pretreatment with NAC. Taken together, these data suggest that ROS are essential for the suppression of SFN-mediated telomerase activity via transcriptional and posttranslational regulation of hTERT.


Assuntos
Anticarcinógenos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Telomerase/antagonistas & inibidores , Tiocianatos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Humanos , Isotiocianatos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sulfóxidos
8.
Cancer Lett ; 274(1): 132-42, 2009 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18952368

RESUMO

Sulforaphane (SFN) is a biologically active compound extracted from cruciferous vegetables, and possessing potent anti-cancer and anti-inflammatory activities. Here, we show that tumor necrosis factor-alpha (TNF-alpha), in combination with a sub-toxic dose of SFN, significantly triggered apoptosis in TNF-alpha-resistant leukemia cells (THP-1, HL60, U937, and K562), which was associated with caspase activity and poly (ADP-ribose)-polymerase cleavage. We also report that SFN non-specifically inhibited TNF-alpha-induced NF-kappaB activation through the inhibition of IkappaBalpha phosphorylation, IkappaBalpha degradation, and p65 nuclear translocation. This inhibition correlated with the suppression of NF-kappaB-dependent genes involved in anti-apoptosis (IAP-1, IAP-2, XIAP, Bcl-2, and Bcl-xL), cell proliferation (c-Myc, COX-2, and cyclin D1), and metastasis (VEGF and MMP-9). These effects suggest that SFN inhibits TNF-alpha-induced NF-kappaB activation through the suppression of IkappaBalpha degradation, leading to reduced expression of NF-kappaB-regulated gene products. Combined treatment with SFN and TNF-alpha was also accompanied by the generation of reactive oxygen species (ROS). Pre-treatment with N-acetyl-l-cysteine significantly attenuated the combined treatment-induced ROS generation and caspase-3-dependent apoptosis, implying the involvement of ROS in this type of cell death. In conclusion, the results of the present study indicate that SFN suppresses TNF-alpha-induced NF-kappaB activity and induces apoptosis through activation of ROS-dependent caspase-3.


Assuntos
Anticarcinógenos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Ativação Enzimática/efeitos dos fármacos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tiocianatos/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Western Blotting , Proliferação de Células/efeitos dos fármacos , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Imunofluorescência , Humanos , Proteínas I-kappa B/metabolismo , Isotiocianatos , Inibidor de NF-kappaB alfa , NF-kappa B/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Sulfóxidos
9.
Biochem Pharmacol ; 76(3): 312-21, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18571148

RESUMO

Pectenotoxin-2 (PTX-2) is a natural compound from marine sponges and has been known to inhibit cytokinesis through the depolymerization of actin filaments. To investigate the role of actin dysfunction by PTX-2 in human leukemia cells, we analyzed the effect of PTX-2 on the cell cycle and apoptosis. Cell cycle analysis showed that the depolymerization of actin with PTX-2 induces G2/M phase arrest at 12 h and endoreduplication at 24 h. Analysis of the cell cycle regulatory proteins demonstrated that PTX-2 increases phosphorylation of cdc25c and decreases the protein levels of cdc2 and cyclin B1. The M phase specific marker protein, phospho-histone 3, was also increased by PTX-2. Furthermore, p21 and CDK2, which are associated with the induction of endoreduplication, were also upregulated. PTX-2 also inhibited the growth of leukemia cells and caused a marked increase in apoptosis, as characterized by annexin-V+ cells and caspase-3 activity. Interestingly, we found that induction of G2/M phase arrest, endoreduplication, and apoptosis by PTX-2 is regulated by the extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) pathway. Inhibitors of ERK and JNK more increased the phosphorylation of cdc25c expression at G2/M arrest stages, and decreased p21 and CDK2 expression at endoreduplication stages and Bax expression at apoptotic stages in the presence of PTX-2. These molecular mechanisms provide that PTX-2 induces G2/M phase arrest, endoreduplication, and apoptosis through the ERK and JNK signal pathway via actin depolymerization.


Assuntos
Actinas/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Furanos/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Piranos/farmacologia , Western Blotting , Caspase 3/metabolismo , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação Enzimática , Citometria de Fluxo , Fase G2/efeitos dos fármacos , Humanos , Macrolídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA