Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(39): 15930-15935, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34570474

RESUMO

Asymmetric cross-electrophile coupling has emerged as a promising tool for producing chiral molecules; however, the potential of this chemistry with metals other than nickel remains unknown. Herein, we report a cobalt-catalyzed enantiospecific vinylation reaction of allylic alcohol with vinyl triflates. This work establishes a new method for the synthesis of enantioenriched 1,4-dienes. The reaction proceeds through a dynamic kinetic coupling approach, which not only allows for direct functionalization of allylic alcohols but also is essential to achieve high chemoselectivity. The use of cobalt enables the reactions to proceed with high enantiospecificity, which have failed to be realized by nickel catalysts.

2.
Angew Chem Int Ed Engl ; 59(51): 23083-23088, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32902100

RESUMO

The cross-electrophile coupling has become a powerful tool for C-C bond formation, but its potential for forging the C-Si bond remains unexplored. Here we report a cross-electrophile Csp2 -Si coupling reaction of vinyl/aryl electrophiles with vinyl chlorosilanes. This new protocol offers an approach for facile and precise synthesis of organosilanes with high molecular diversity and complexity from readily available materials. The reaction proceeds under mild and non-basic conditions, demonstrating a high step economy, broad substrate scope, wide functionality tolerance, and easy scalability. The synthetic utility of the method is shown by its efficient accessing of silicon bioisosteres, the design of new BCB-monomers, and studies on the Hiyama cross-coupling of vinylsilane products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA