Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Gut ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816188

RESUMO

OBJECTIVE: Hirschsprung disease (HSCR) is a severe congenital disorder affecting 1:5000 live births. HSCR results from the failure of enteric nervous system (ENS) progenitors to fully colonise the gastrointestinal tract during embryonic development. This leads to aganglionosis in the distal bowel, resulting in disrupted motor activity and impaired peristalsis. Currently, the only viable treatment option is surgical resection of the aganglionic bowel. However, patients frequently suffer debilitating, lifelong symptoms, with multiple surgical procedures often necessary. Hence, alternative treatment options are crucial. An attractive strategy involves the transplantation of ENS progenitors generated from human pluripotent stem cells (hPSCs). DESIGN: ENS progenitors were generated from hPSCs using an accelerated protocol and characterised, in detail, through a combination of single-cell RNA sequencing, protein expression analysis and calcium imaging. We tested ENS progenitors' capacity to integrate and affect functional responses in HSCR colon, after ex vivo transplantation to organotypically cultured patient-derived colonic tissue, using organ bath contractility. RESULTS: We found that our protocol consistently gives rise to high yields of a cell population exhibiting transcriptional and functional hallmarks of early ENS progenitors. Following transplantation, hPSC-derived ENS progenitors integrate, migrate and form neurons/glia within explanted human HSCR colon samples. Importantly, the transplanted HSCR tissue displayed significantly increased basal contractile activity and increased responses to electrical stimulation compared with control tissue. CONCLUSION: Our findings demonstrate, for the first time, the potential of hPSC-derived ENS progenitors to repopulate and increase functional responses in human HSCR patient colonic tissue.

2.
Development ; 148(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558316

RESUMO

During embryonic development, the gut is innervated by intrinsic (enteric) and extrinsic nerves. Focusing on mammalian ENS development, in this Review we highlight how important the different compartments of this innervation are to assure proper gut function. We specifically address the three-dimensional architecture of the innervation, paying special attention to the differences in development along the longitudinal and circumferential axes of the gut. We review recent information about the formation of both intrinsic innervation, which is fairly well-known, as well as the establishment of the extrinsic innervation, which, despite its importance in gut-brain signaling, has received much less attention. We further discuss how external microbial and nutritional cues or neuroimmune interactions may influence development of gut innervation. Finally, we provide summary tables, describing the location and function of several well-known molecules, along with some newer factors that have more recently been implicated in the development of gut innervation.


Assuntos
Desenvolvimento Embrionário/fisiologia , Sistema Nervoso Entérico/embriologia , Sistema Nervoso Entérico/crescimento & desenvolvimento , Trato Gastrointestinal/inervação , Animais , Encéfalo/fisiologia , Humanos , Neurônios/fisiologia , Organogênese/fisiologia , Transdução de Sinais
3.
Neuron ; 106(2): 237-245.e8, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32097630

RESUMO

Lissencephaly (LIS), denoting a "smooth brain," is characterized by the absence of normal cerebral convolutions with abnormalities of cortical thickness. Pathogenic variants in over 20 genes are associated with LIS. The majority of posterior predominant LIS is caused by pathogenic variants in LIS1 (also known as PAFAH1B1), although a significant fraction remains without a known genetic etiology. We now implicate CEP85L as an important cause of posterior predominant LIS, identifying 13 individuals with rare, heterozygous CEP85L variants, including 2 families with autosomal dominant inheritance. We show that CEP85L is a centrosome protein localizing to the pericentriolar material, and knockdown of Cep85l causes a neuronal migration defect in mice. LIS1 also localizes to the centrosome, suggesting that this organelle is key to the mechanism of posterior predominant LIS.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Proteínas do Citoesqueleto/genética , Proteínas de Fusão Oncogênica/genética , Adolescente , Adulto , Idade de Início , Animais , Centrossomo/patologia , Criança , Pré-Escolar , Aberrações Cromossômicas , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/diagnóstico por imagem , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/patologia , Feminino , Técnicas de Silenciamento de Genes , Variação Genética , Heterozigoto , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Camundongos , Mutação/genética , Linhagem , Convulsões/etiologia , Adulto Jovem
4.
Nat Commun ; 9(1): 2498, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29950674

RESUMO

Mutations in genes involved in the production, migration, or differentiation of cortical neurons often lead to malformations of cortical development (MCDs). However, many genetic mutations involved in MCD pathogenesis remain unidentified. Here we developed a genetic screening paradigm based on transposon-mediated somatic mutagenesis by in utero electroporation and the inability of mutant neuronal precursors to migrate to the cortex and identified 33 candidate MCD genes. Consistent with the screen, several genes have already been implicated in neural development and disorders. Functional disruption of the candidate genes by RNAi or CRISPR/Cas9 causes altered neuronal distributions that resemble human cortical dysplasia. To verify potential clinical relevance of these candidate genes, we analyzed somatic mutations in brain tissue from patients with focal cortical dysplasia and found that mutations are enriched in these candidate genes. These results demonstrate that this approach is able to identify potential mouse genes involved in cortical development and MCD pathogenesis.


Assuntos
Córtex Cerebral/anormalidades , Epilepsia/genética , Testes Genéticos/métodos , Malformações do Desenvolvimento Cortical do Grupo I/genética , Neurônios/patologia , Adolescente , Adulto , Animais , Biomarcadores/análise , Sistemas CRISPR-Cas , Córtex Cerebral/citologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Criança , Pré-Escolar , Elementos de DNA Transponíveis/genética , Modelos Animais de Doenças , Epilepsia/diagnóstico , Epilepsia/patologia , Feminino , Neuroimagem Funcional , Técnicas de Silenciamento de Genes , Humanos , Masculino , Malformações do Desenvolvimento Cortical do Grupo I/diagnóstico , Malformações do Desenvolvimento Cortical do Grupo I/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Mutagênese/genética , Mutação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA