RESUMO
The antigen processing machinery (APM) components needed for a tumor cell to present an antigen to a T cell are expressed at low levels in solid tumors, constituting an important mechanism of immune escape. More than most other solid tumors, head and neck squamous cell carcinoma (HNSCC) cells tend to have low APM expression, rendering them insensitive to immune checkpoint blockade and most other forms of immunotherapy. In HNSCC, this APM deficiency is largely driven by high levels of EGFR and SHP2, leading to low expression and activation of STAT1; however, recent studies suggest that p53, which is often mutated in HNSCCs, may also play a role. In the current study, we aimed to investigate the extent to which STAT1 and p53 individually regulate APM component expression in HNSCC cells. We found that in cells lacking functional p53, APM expression could still be induced by interferon-gamma or DNA-damaging chemotherapy (cisplatin) as long as STAT1 expression remained intact; when both transcription factors were knocked down, APM component expression was abolished. When we bypassed these deficient pathways by rescuing the expression of NLRC5, APM expression was also restored. These results suggest that dual loss of functional STAT1 and p53 may render HNSCC cells incapable of processing and presenting antigens, but rescue of downstream NLRC5 expression may be an attractive strategy for restoring sensitivity to T cell-based immunotherapy.
Assuntos
Apresentação de Antígeno , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteína Supressora de Tumor p53/genética , Neoplasias de Cabeça e Pescoço/genética , Cisplatino , Fator de Transcrição STAT1/genética , Peptídeos e Proteínas de Sinalização IntracelularRESUMO
OBJECTIVE: Increased breathing rate, apnea, and respiratory failure are associated with sudden unexpected death in epilepsy (SUDEP). We recently demonstrated the progressive nature of epilepsy and mortality in Kcna1-/- mice, a model of temporal lobe epilepsy and SUDEP. Here we tested the hypothesis that respiratory dysfunction progresses with age in Kcna1-/- mice, thereby increasing risk of respiratory failure and sudden death (SD). METHODS: Respiratory parameters were determined in conscious mice at baseline and following increasing doses of methacholine (MCh) using noninvasive airway mechanics (NAM) systems. Kcna1+/+ , Kcna1+/- , and Kcna1-/- littermates were assessed during 3 age ranges when up to ~30%, ~55%, and ~90% of Kcna1-/- mice have succumbed to SUDEP: postnatal day (P) 32-36, P40-46, and P48-56, respectively. Saturated arterial O2 (SaO2 ) was determined with pulse oximetry. Lung and brain tissues were isolated and Kcna1 gene and protein expression were evaluated by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and Western blot techniques. Airway smooth muscle responsiveness was assessed in isolated trachea exposed to MCh. RESULTS: Kcna1-/- mice experienced an increase in basal respiratory drive, chronic oxygen desaturation, frequent apnea-hypopnea (A-H), an atypical breathing sequence of A-H-tachypnea-A-H, increased tidal volume, and hyperventilation induced by MCh. The MCh-provoked hyperventilation was dramatically attenuated with age. Of interest, only Kcna1-/- mice developed seizures following exposure to MCh. Seizures were provoked by lower concentrations of MCh as Kcna1-/- mice approached SD. MCh-induced seizures experienced by a subset of younger Kcna1-/- mice triggered death. Respiratory parameters of these younger Kcna1-/- mice resembled older near-SD Kcna1-/- mice. Kcna1 gene and protein were not expressed in Kcna1+/+ and Kcna1+/- lungs, and MCh-mediated airway smooth muscle contractions exhibited similar half-maximal effective concentration( EC50 ) in isolated Kcna1+/+ and Kcna1-/- trachea. SIGNIFICANCE: The Kcna1-/- model of SUDEP exhibits progressive respiratory dysfunction, which suggests a potential increased susceptibility for respiratory failure during severe seizures that may result in sudden death.
Assuntos
Apneia/genética , Morte Súbita , Epilepsia do Lobo Temporal/fisiopatologia , Hipóxia/genética , Canal de Potássio Kv1.1/genética , Insuficiência Respiratória/genética , Animais , Apneia/complicações , Apneia/metabolismo , Broncoconstritores/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Epilepsia , Epilepsia do Lobo Temporal/complicações , Expressão Gênica , Hiperventilação/induzido quimicamente , Hipóxia/complicações , Hipóxia/metabolismo , Canal de Potássio Kv1.1/metabolismo , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Knockout , Músculo Liso/efeitos dos fármacos , Insuficiência Respiratória/complicações , Insuficiência Respiratória/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taquipneia/complicações , Taquipneia/genética , Taquipneia/metabolismo , Volume de Ventilação Pulmonar , Traqueia/efeitos dos fármacosRESUMO
BACKGROUND: Preclinical models are invaluable for studies of head and neck cancer. There is growing interest in the use of orthotopic syngeneic models, wherein cell lines are injected into the oral cavity of immunocompetent mice. In this brief report, we describe injection of mouse oral cancer 1 (MOC1) cells into the buccal mucosa and illustrate the tumor growth pattern, lymph node response, and changes in the tumor immune microenvironment over time. METHODS: MOC1 cells were injected into the buccal mucosa of C57BL6 mice. Animals were sacrificed at 7, 14, 21, or 27 days. Tumors and lymph nodes were analyzed by flow cytometry. RESULTS: All mice developed tumors by day 7 and required euthanasia for tumor burden and/or weight loss by day 27. Lymph node mapping showed that these tumors reliably drain to a submandibular lymph node. The proportion of intratumoral CD8+ T cells decreased over time, while neutrophilic myeloid cells increased dramatically. Growth of orthotopic MOC2 and MOC22 also showed similar growth patterns versus published data in flank tumors. CONCLUSIONS: When used orthotopically in the buccal mucosa, the MOC1 model induces a robust lymph node response and distinct pattern of immune cell infiltration, with peak immune infiltration by day 14.
Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Camundongos , Mucosa Bucal , Camundongos Endogâmicos C57BL , Microambiente Tumoral , Linhagem Celular TumoralRESUMO
Background: Preclinical models are invaluable for studies on the pathogenesis and treatment of head and neck cancer. In recent years, there has been growing interest in the use of orthotopic syngeneic models, wherein head and neck cancer cell lines are injected into the oral cavity of immunocompetent mice. However, few such orthotopic models have been described in detail. In this brief report, we describe techniques for injection of mouse oral cancer 1 (MOC1) cells into the buccal mucosa and illustrate the tumor growth pattern, lymph node response, and changes in the tumor immune microenvironment over time. Methods: MOC1 cells were injected into the buccal mucosa of C57BL6 mice. Animals were sacrificed at 7, 14, 21, or 27 days. Tumors and lymph nodes were harvested and analyzed for immune cell subsets by flow cytometry. Results: All inoculated mice developed palpable buccal tumors by day 7 and required euthanasia for tumor burden and/or weight loss by day 27. Lymph node mapping showed that these tumors reliably drain to a submandibular lymph node, which enlarges considerably over time. As in MOC1 tumors in the flank, the proportion of intratumoral CD8+ T cells decreased over time, while neutrophilic myeloid cells increased dramatically. However, the pattern and time course of immune changes in the TME were slightly different in the orthotopic buccal model. Conclusions: When used orthotopically in the buccal mucosa, the MOC1 model induces a robust lymph node response and distinct pattern of immune cell infiltration, with peak immune infiltration by day 14.
RESUMO
T lymphocytes expressing CD57 and lacking costimulatory receptors CD27/CD28 have been reported to accumulate with aging, chronic infection, and cancer. These cells are described as senescent, with inability to proliferate but enhanced cytolytic and cytokine-producing capacity. However, robust functional studies on these cells taken directly from cancer patients are lacking. We isolated these T cells and their CD27/28+ counterparts from blood and tumor samples of 50 patients with previously untreated head and neck cancer. Functional studies confirmed that these cells have enhanced ability to degranulate and produce IFN-γ. They also retain the ability to proliferate, thus are not senescent. These data suggest that CD27/28-CD57+ CD8+ T cells are a subset of highly differentiated, CD45RA+ effector memory (TEMRA) cells with retained proliferative capacity. Patients with > 34% of these cells among CD8+ T cells in the blood had a higher rate of locoregional disease relapse, suggesting these cells may have prognostic significance.
Assuntos
Antígenos CD28 , Antígenos CD57 , Linfócitos T CD8-Positivos , Neoplasias de Cabeça e Pescoço , Interferon gama , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antígenos CD28/metabolismo , Antígenos CD57/metabolismo , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Senescência Celular/imunologia , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Interferon gama/metabolismoRESUMO
MicroRNAs (miRNAs) are short non-coding RNA molecules (18-25 nucleotides) that regulate several fundamental biological processes. Emerging evidence has shown more than 1500 miRNAs functions in the cell cycle, proliferation, apoptosis, oxidative stress, immune response, DNA damage, and epigenetics alterations. miRNAs are bidirectionally in nature and act as a tumor suppressor and as an oncogene through crosstalk between tumor cells and immune cells. Although the roles of miRNAs in several cancers are well studied, little is known about ultraviolet B (UVB) radiation-induced skin cancer. Here, we performed a comprehensive screening of 1281 miRNAs in tumor tissues and compared their expression with normal skin. Our results demonstrate that the expression levels of 587 miRNAs were altered in tumor tissues compared to their expression in normal skin. The expression of 337 miRNAs was upregulated from 1.5-12 folds, while the expression of 250 miRNAs was downregulated up to 1.5-10 folds in tumors. Further, intraperitoneal injection of a mimic of down-regulated miR-15b (30nM) and an inhibitor of upregulated miR-133a (20nM) protect UVB-induced suppression of contact hypersensitivity (CHS) response. In conclusion, we identified a network of altered miRNAs in tumors that can serve as prognostic biomarkers and therapeutic targets to manage photocarcinogenesis effectively.
RESUMO
Predominantly, head and neck cancer (HNC) is considered a regional disease and develops in the nasal cavity, oral cavity, tongue, pharynx, and larynx. In the advanced stage, the HNC spread into distant organs. By the time head and neck cancer diagnosed, the estimated metastasis is occurred in 10-40% cases. The most important vital organs affected by distant metastasis are the lungs, bones, and liver. Despite several advancements in chemotherapies, no significant changes are observed as 5-year survival rate remains the same. Therefore, it is crucial to decipher molecular mechanisms contributing to the metastatic dissemination of head and neck cancer. Here, we tested a novel ALCAM/TFAP2 signaling by targeting multidisciplinary miR-214 expression in head and cancer cells. Our results revealed that HNC cell lines (CAL27, SCC-9, SCC-4, and SCC-25) exhibit higher expression of miR-214 compared with normal human bronchial epithelial (NHBE) cells. Higher expression of miR-214 drives the invasive potential of these cell lines. Down-regulation of miR-214 in CAL27 and SCC-9 cells either using an anti-miR-214 inhibitor (50nM) or a small molecule of green tea (EGCG) inhibited cell invasion. Treating CAL27 and SCC-9 cells with EGCG also reduces ALCAM expression, a key activated leukocyte cell adhesion molecule, potentially blocking mesenchymal phenotype. Dietary administration of EGCG significantly inhibits distant metastasis of SCC-9 cells into the lungs, liver, and kidneys. Our results also demonstrate that the reduction of miR-214 expression influences in vitro cell movement and extravasation, as evident by reduced CD31 expression, a neovascularization marker. Together, these studies suggest that identifying bioactive molecules that can inhibit distant metastasis regulated by the miRNAs may provide potent interventional approaches and a better understanding of the complex functions of miRNAs and their therapeutic targets for clinical application.
RESUMO
Head and neck cancers are among the deadliest cancers, ranked sixth globally in rates of high mortality and poor patient prognoses. The prevalence of head and neck squamous cell carcinoma (HNSCC) is associated with smoking and excessive alcohol consumption. Despite several advances in diagnostic and interventional methods, the morbidity of subjects with HNSCC has remained unchanged over the last 30 years. Epigenetic alterations, such as DNA hypermethylation, are commonly associated with several cancers, including HNSCC. Thus, epigenetic changes are considered promising therapeutic targets for chemoprevention. Here, we investigated the effect of EGCG on DNA hypermethylation and the growth of HNSCC. First, we assessed the expression levels of global DNA methylation in HNSCC cells (FaDu and SCC-1) and observed enhanced methylation levels compared with normal human bronchial epithelial cells (NHBE). Treatment of EGCG to HNSCC cells significantly inhibited global DNA hypermethylation by up to 70-80% after 6 days. Inhibition of DNA hypermethylation in HNSCC cells was confirmed by the conversion of 5-methylcytosine (5-mc) into 5-hydroxy methylcytosine (5hmC). DNA methyltransferases regulate DNA methylation. Next, we checked the effect of EGCG on the expression levels of DNA methyltransferases (DNMTs) and DNMT activity. Treatment of EGCG to HNSCC cells significantly reduced DNMT activity to 60% in SCC-1 and 80% in FaDu cells. The protein levels of DNMT3a and DNMT3b were downregulated in both cell lines after EGCG treatment. EGCG treatment to HNSCC cells reactivated tumor suppressors and caused decreased cell proliferation. Our in vivo study demonstrated that administration of EGCG (0.5%, w/w) as a supplement within an AIN76A diet resulted in inhibition of tumor growth in FaDu xenografts in nude mice (80%; p < 0.01) compared with non-EGCG-treated controls. The growth inhibitory effect of dietary EGCG on the HNSCC xenograft tumors was associated with the inhibition of DNMTs and reactivation of silenced tumor suppressors. Together, our study provides evidence that EGCG acts as a DNA demethylating agent and can reactivate epigenetically silenced tumor suppressors to inhibit the growth of HNSCC cells.
RESUMO
Inhibitors of apoptosis proteins (IAPs) inhibit the intrinsic and extrinsic cell death pathways, promoting cell survival. Antagonists of these pathways are under study as anti-cancer therapeutics. A high proportion of head and neck squamous cell carcinomas (HNSCCs) have genomic alterations in IAP pathways, resulting in the dysregulation of cell death pathways and rendering them susceptible to IAP antagonist therapy. Preclinical studies suggest IAP antagonists, also known as second mitochondria-derived activator of caspases mimetics, may be effective treatments for HNSCC, especially when combined with radiation. Mechanistic studies have shown both molecular mechanisms (i.e., enhanced cell death) and immune mechanisms (e.g., immunogenic cell death and T-cell activation), underlying the efficacy of these drugs in preclinical models. Phase I/II clinical trials have shown promising results, portending a future where this class of targeted therapies becomes incorporated into the treatment paradigm for head and neck cancers. IAP antagonists have shown great promise for head and neck cancer, especially in combination with radiation therapy. Here, we review recent preclinical and clinical studies on the use of these novel targeted agents for head and neck cancer.
Assuntos
Antineoplásicos , Neoplasias de Cabeça e Pescoço , Humanos , Proteínas Inibidoras de Apoptose/genética , Apoptose , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular TumoralRESUMO
BACKGROUND: Anti-PD-1 immune checkpoint blockade is approved for first-line treatment of recurrent/metastatic head and neck squamous cell carcinoma (HNSCC), but few patients respond. Statin drugs (HMG-CoA reductase inhibitors) are associated with superior survival in several cancer types, including HNSCC. Emerging data suggest that manipulation of cholesterol may enhance some aspects of antitumor immunity. METHODS: We used syngeneic murine models (mouse oral cancer, MOC1 and TC-1) to investigate our hypothesis that a subset of statin drugs would enhance antitumor immunity and delay tumor growth. RESULTS: Using an ex vivo coculture assay of murine cancer cells and tumor infiltrating lymphocytes, we discovered that all seven statin drugs inhibited tumor cell proliferation. Simvastatin and lovastatin also enhanced T-cell killing of tumor cells. In mice, daily oral simvastatin or lovastatin enhanced tumor control and extended survival when combined with PD-1 blockade, with rejection of MOC1 tumors in 30% of mice treated with lovastatin plus anti-PD-1. Results from flow cytometry of tumors and tumor-draining lymph nodes suggested T cell activation and shifts from M2 to M1 macrophage predominance as potential mechanisms of combination therapy. CONCLUSIONS: These results suggest that statins deserve further study as well-tolerated, inexpensive drugs that may enhance responses to PD-1 checkpoint blockade and other immunotherapies for HNSCC.
Assuntos
Neoplasias de Cabeça e Pescoço , Inibidores de Hidroximetilglutaril-CoA Redutases , Animais , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inibidores de Checkpoint Imunológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Sinvastatina/farmacologia , Sinvastatina/uso terapêuticoRESUMO
Previously, we and others have shown that the regular intake of green tea polyphenols (GTPs) reduces ultraviolet B (UVB) radiation-induced skin cancer by targeting multiple signaling pathways, including DNA damage, DNA repair, immunosuppression, and inflammation. Here, we determine the effect of GTPs on UVB-induced epigenetic changes, emphasizing DNA hypermethylation in UV-exposed skin and tumors and their association with miR-29, a key regulator of DNA methyltransferases (DNMTs). Skin cancer was induced in SKH-1 hairless mice following repeated exposures of UVB radiation (180 mJ/cm2, three times/week, 24 weeks) with or without GTPs supplementation (0.2%) in drinking water. Regular intake of GTPs inhibited tumor growth by hindering the cascade of DNA hypermethylation events. GTPs supplementation significantly blocked UVB-induced DNA hypermethylation in the skin (up to 35%; p < 0.0001) and in tumors (up to 50%; p < 0.0001). Experimental results showed that the levels of DNA hypermethylation were higher in GTPs-treated mice than in the control group. The expressions of miR-29a, miR-29b, and miR-29c were markedly decreased in UV-induced skin tumors, and GTPs administration blocked UVB-induced miR-29s depletion. Furthermore, these observations were verified using the in vitro approach in human skin cancer cells (A431) followed by treatment with GTPs or mimics of miR-29c. Increased levels of miR-29 were observed in GTPs-treated A431 cells, resulting in increased TET activity and decreased DNA hypermethylation. In conclusion, UVB-mediated miR-29 depletion promotes DNA hypermethylation and leads to enhanced tumor growth by silencing tumor suppressors. Regular intake of GTPs rescued UVB-induced miR-29 depletion and prevented tumor growth by maintaining reduced DNA hypermethylation and activating tumor suppressors. Our observations suggest that miR-based strategies and regular consumption of GTPs could minimize the risk of UVB-induced skin cancers and contribute to better management of NMSCs.
RESUMO
Mechanisms underlying the rupture of atherosclerotic plaque, a crucial factor in the development of myocardial infarction and stroke, are not well defined. Here, we examined the role of epidermal growth factor (EGF)-mediated matrix metalloproteinases (MMP) on the stability of interstitial collagens in vascular smooth muscle cells (VSMCs) isolated from carotid endarterectomy tissues of symptomatic and asymptomatic patients with carotid stenosis. VSMCs isolated from the carotid plaques of both asymptomatic and symptomatic patients were treated with EGF. The MMP-9 activity was quantified by gelatin zymography and the analysis of mRNA transcripts and protein for MMP-9, MMP-1, EGFR and collagen types I, Col I(α1) and collagen type III, Col III(α1) were analyzed by qPCR and immunofluorescence, respectively. The effect of EGF treatment to increase MMP-9 activity and mRNA transcripts for MMP-9, MMP-1, and EGFR and to decrease mRNA transcripts for Col I(α1) and Col III(α1) was threefold to fourfold greater in VSMCs isolated from the carotid plaques of symptomatic than asymptomatic patients. Inhibitors of EGFR (AG1478) and a small molecule inhibitor of MMP-9 decreased the MMP9 expression and upregulated Col I(α1) and Col III(α1) in EGF-treated VSMCs of both groups. Additionally, the magnitude in decreased MMP-9 mRNA and increased Col I(α1) and Col III(α1) due to knockdown of MMP-9 gene with siRNA in EGF-treated VSMCs was significantly greater in the symptomatic group than the asymptomatic group. Thus, a selective blockade of both EGFR and MMP-9 may be a novel strategy and a promising target for stabilizing vulnerable plaques in patients with carotid stenosis.
RESUMO
Mesenchymal stem cells (MSCs) hold potential for the regeneration of damaged tissues in cardiovascular diseases. In this study, we investigated the potential of porcine MSCs to differentiate into endothelial cells (ECs) in vitro. The cultured bone marrow-derived cells were CD11bâ»CD34â»CD44âºCD45â»CD90⺠and showed mesodermal lineage differentiation, which is characteristic of MSCs. The MSCs were induced to differentiate into ECs using endothelial growth medium (EGM), with and without high concentrations of VEGF (EGM + VEGF; 50 ng/ml). Endothelial basal medium (EBM) without growth factors served as the control. The EC differentiation was assessed by the presence of vWF, ability to take up acetylated LDL, in vitro angiogenesis assay, flow cytometry and qPCR of EC markers vWF, VE-cadherin, PECAM-1, VEGF-R1 and VEGF-R2 after 10 days of stimulation. Cells cultured in EGM + VEGF medium demonstrated higher amounts of DiI-AcLDL-positive cells and enhanced the presence of vWF (90%), VE-Cadherin- (60%) and PECAM-1 (48%)-positive cells, than in EBM. These cells showed profuse sprouting of capillary tubes and closed polygon formation in the angiogenesis assay. There was 1.5-2-fold increase in the mRNA expression of endothelial markers in the cells stimulated with EGM + VEGF medium when compared to control. The results demonstrate the ability of porcine MSCs to differentiate into ECs under in vitro inducing conditions. The differentiated cells would provide new options for re-endothelialization following interventional procedures and tissue engineering.