Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Immunol ; 23(6): 904-915, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618834

RESUMO

Malignancy can be suppressed by the immune system. However, the classes of immunosurveillance responses and their mode of tumor sensing remain incompletely understood. Here, we show that although clear cell renal cell carcinoma (ccRCC) was infiltrated by exhaustion-phenotype CD8+ T cells that negatively correlated with patient prognosis, chromophobe RCC (chRCC) had abundant infiltration of granzyme A-expressing intraepithelial type 1 innate lymphoid cells (ILC1s) that positively associated with patient survival. Interleukin-15 (IL-15) promoted ILC1 granzyme A expression and cytotoxicity, and IL-15 expression in chRCC tumor tissue positively tracked with the ILC1 response. An ILC1 gene signature also predicted survival of a subset of breast cancer patients in association with IL-15 expression. Notably, ILC1s directly interacted with cancer cells, and IL-15 produced by cancer cells supported the expansion and anti-tumor function of ILC1s in a murine breast cancer model. Thus, ILC1 sensing of cancer cell IL-15 defines an immunosurveillance mechanism of epithelial malignancies.


Assuntos
Neoplasias da Mama , Interleucina-15/metabolismo , Animais , Neoplasias da Mama/genética , Linfócitos T CD8-Positivos , Feminino , Granzimas , Humanos , Imunidade Inata , Linfócitos , Camundongos
2.
Immunity ; 55(11): 2044-2058.e5, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36288724

RESUMO

Tumors are populated by antigen-presenting cells (APCs) including macrophage subsets with distinct origins and functions. Here, we examined how cancer impacts mononuclear phagocytic APCs in a murine model of breast cancer. Tumors induced the expansion of monocyte-derived tumor-associated macrophages (TAMs) and the activation of type 1 dendritic cells (DC1s), both of which expressed and required the transcription factor interferon regulatory factor-8 (IRF8). Although DC1s mediated cytotoxic T lymphocyte (CTL) priming in tumor-draining lymph nodes, TAMs promoted CTL exhaustion in the tumor, and IRF8 was required for TAMs' ability to present cancer cell antigens. TAM-specific IRF8 deletion prevented exhaustion of cancer-cell-reactive CTLs and suppressed tumor growth. Tumors from patients with immune-infiltrated renal cell carcinoma had abundant TAMs that expressed IRF8 and were enriched for an IRF8 gene expression signature. Furthermore, the TAM-IRF8 signature co-segregated with CTL exhaustion signatures across multiple cancer types. Thus, CTL exhaustion is promoted by TAMs via IRF8.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Animais , Camundongos , Macrófagos Associados a Tumor , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Linfócitos T Citotóxicos , Células Dendríticas
4.
Nature ; 605(7908): 139-145, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35444279

RESUMO

Cellular transformation induces phenotypically diverse populations of tumour-infiltrating T cells1-5, and immune checkpoint blockade therapies preferentially target T cells that recognize cancer cell neoantigens6,7. Yet, how other classes of tumour-infiltrating T cells contribute to cancer immunosurveillance remains elusive. Here, in a survey of T cells in mouse and human malignancies, we identified a population of αß T cell receptor (TCR)-positive FCER1G-expressing innate-like T cells with high cytotoxic potential8 (ILTCKs). These cells were broadly reactive to unmutated self-antigens, arose from distinct thymic progenitors following early encounter with cognate antigens, and were continuously replenished by thymic progenitors during tumour progression. Notably, expansion and effector differentiation of intratumoural ILTCKs depended on interleukin-15 (IL-15) expression in cancer cells, and inducible activation of IL-15 signalling in adoptively transferred ILTCK progenitors suppressed tumour growth. Thus, the antigen receptor self-reactivity, unique ontogeny, and distinct cancer cell-sensing mechanism distinguish ILTCKs from conventional cytotoxic T cells, and define a new class of tumour-elicited immune response.


Assuntos
Imunidade Inata , Interleucina-15 , Neoplasias , Animais , Diferenciação Celular , Camundongos , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/metabolismo
5.
Immunol Rev ; 323(1): 150-163, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38506480

RESUMO

Cancer progression can be restrained by tumor-infiltrating lymphocytes in a process termed cancer immunosurveillance. Based on how lymphocytes are activated and recruited to the tumor tissue, cancer immunity is either pre-wired, in which innate lymphocytes and innate-like T cells are directly recruited to and activated in tumors following their differentiation in primary lymphoid organs; or priming-dependent, in which conventional adaptive T cells are first primed by cognate antigens in secondary lymphoid organs before homing to and reactivated in tumors. While priming-dependent cancer immunity has been a focus of cancer immunology research for decades, in part due to historical preconception of cancer theory and tumor model choice as well as clinical success of conventional adaptive T cell-directed therapeutic programs, recent studies have revealed that pre-wired cancer immunity mediated by tissue-resident type 1 innate lymphoid cells (ILC1s) and killer innate-like T cells (ILTCKs) is an integral component of the cancer immunosurveillance process. Herein we review the distinct ontogenies and cancer-sensing mechanisms of ILC1s and ILTCKs in murine genetic cancer models as well as the conspicuously conserved responses in human malignancies. How ILC1s and ILTCKs may be targeted to broaden the scope of cancer immunotherapy beyond conventional adaptive T cells is also discussed.


Assuntos
Imunidade Inata , Neoplasias , Humanos , Animais , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Células Matadoras Naturais/imunologia , Vigilância Imunológica , Microambiente Tumoral/imunologia , Camundongos , Linfócitos/imunologia , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
6.
BMC Genomics ; 18(1): 136, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28173755

RESUMO

BACKGROUND: Cancer genomes evolve in both space and time, which contributes to the genetic heterogeneity that underlies tumor progression and drug resistance. In human melanoma, identifying mechanistically important events in tumor evolution is hampered due to the high background mutation rate from ultraviolet (UV) light. Cross-species oncogenomics is a powerful tool for identifying these core events, in which transgenically well-defined animal models of cancer are compared to human cancers to identify key conserved alterations. RESULTS: We use a zebrafish model of tumor progression and drug resistance for cross-species genomic analysis in melanoma. Zebrafish transgenic tumors are initiated with just 2 genetic lesions, BRAFV600E and p53-/-, yet take 4-6 months to appear, at which time whole genome sequencing demonstrated >3,000 new mutations. An additional 4-month exposure to the BRAF inhibitor vemurafenib resulted in a highly drug resistant tumor that showed 3 additional new DNA mutations in the genes BUB1B, PINK1, and COL16A1. These genetic changes in drug resistance are accompanied by a massive reorganization of the transcriptome, with differential RNA expression of over 800 genes, centered on alterations in cAMP and PKA signaling. By comparing both the DNA and mRNA changes to a large panel of human melanomas, we find that there is a highly significant enrichment of these alterations in human patients with vemurafenib resistant disease. CONCLUSIONS: Our results suggest that targeting of alterations that are conserved between zebrafish and humans may offer new avenues for therapeutic intervention. The approaches described here will be broadly applicable to the diverse array of cancer models available in the zebrafish, which can be used to inform human cancer genomics.


Assuntos
Transformação Celular Neoplásica/genética , Evolução Molecular , Genoma , Genômica , Melanoma/genética , Animais , Análise por Conglomerados , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Melanoma/metabolismo , Melanoma/patologia , Mutação , Transdução de Sinais , Especificidade da Espécie , Peixe-Zebra
7.
Sci Immunol ; 7(70): eabi8642, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394814

RESUMO

Innate lymphocytes are integral components of the cellular immune system that can coordinate host defense against a multitude of challenges and trigger immunopathology when dysregulated. Natural killer (NK) cells and innate lymphoid cells (ILCs) are innate immune effectors postulated to functionally mirror conventional cytotoxic T lymphocytes and helper T cells, respectively. Here, we showed that the cytolytic molecule granzyme C was expressed in cells with the phenotype of type 1 ILCs (ILC1s) in mouse liver and salivary gland. Cell fate-mapping and transfer studies revealed that granzyme C-expressing innate lymphocytes could be derived from ILC progenitors and did not interconvert with NK cells, ILC2s, or ILC3s. Granzyme C defined a maturation state of ILC1s. These granzyme C-expressing ILC1s required the transcription factors T-bet and, to a lesser extent, Eomes and support from transforming growth factor-ß (TGF-ß) signaling for their maintenance in the salivary gland. In a transgenic mouse breast cancer model, depleting ILC1s caused accelerated tumor growth. ILC1s gained granzyme C expression following interleukin-15 (IL-15) stimulation, which enabled perforin-mediated cytotoxicity. Constitutive activation of STAT5, a transcription factor regulated by IL-15, in granzyme C-expressing ILC1s triggered lethal perforin-dependent autoimmunity in neonatal mice. Thus, granzyme C marks a cytotoxic effector state of ILC1s, broadening their function beyond "helper-like" lymphocytes.


Assuntos
Imunidade Inata , Interleucina-15 , Animais , Autoimunidade , Granzimas , Células Matadoras Naturais , Camundongos , Perforina
8.
Cancer Cell ; 39(5): 662-677.e6, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33861994

RESUMO

Clear cell renal cell carcinomas (ccRCCs) are highly immune infiltrated, but the effect of immune heterogeneity on clinical outcome in ccRCC has not been fully characterized. Here we perform paired single-cell RNA (scRNA) and T cell receptor (TCR) sequencing of 167,283 cells from multiple tumor regions, lymph node, normal kidney, and peripheral blood of two immune checkpoint blockade (ICB)-naïve and four ICB-treated patients to map the ccRCC immune landscape. We detect extensive heterogeneity within and between patients, with enrichment of CD8A+ tissue-resident T cells in a patient responsive to ICB and tumor-associated macrophages (TAMs) in a resistant patient. A TCR trajectory framework suggests distinct T cell differentiation pathways between patients responding and resistant to ICB. Finally, scRNA-derived signatures of tissue-resident T cells and TAMs are associated with response to ICB and targeted therapies across multiple independent cohorts. Our study establishes a multimodal interrogation of the cellular programs underlying therapeutic efficacy in ccRCC.


Assuntos
Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Humanos , Neoplasias Renais/imunologia , Ativação Linfocitária/genética , Receptor de Morte Celular Programada 1/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
9.
Cell Mol Immunol ; 16(7): 627-633, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30804475

RESUMO

Innate lymphocytes are a diverse population of cells that carry out specialized functions in steady-state homeostasis and during immune challenge. While circulating cytotoxic natural killer (NK) cells have been studied for decades, tissue-resident innate lymphoid cells (ILCs) have only been characterized and studied over the past few years. As ILCs have been largely viewed in the context of helper T-cell biology, models of ILC lineage and function have been founded within this perspective. Notably, tissue-resident innate lymphocytes with cytotoxic potential have been described in an array of tissues, yet whether they are derived from the NK or ILC lineage is only beginning to be elucidated. In this review, we aim to shed light on the identities of innate lymphocytes through the lenses of cell lineage, localization, and timing of differentiation.


Assuntos
Linfócitos/imunologia , Animais , Diferenciação Celular , Linhagem da Célula , Citocinas/imunologia , Homeostase , Humanos , Imunidade Inata , Ativação Linfocitária
10.
Nat Commun ; 8: 14343, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28181494

RESUMO

Cellular plasticity is a state in which cancer cells exist along a reversible phenotypic spectrum, and underlies key traits such as drug resistance and metastasis. Melanoma plasticity is linked to phenotype switching, where the microenvironment induces switches between invasive/MITFLO versus proliferative/MITFHI states. Since MITF also induces pigmentation, we hypothesize that macrometastatic success should be favoured by microenvironments that induce a MITFHI/differentiated/proliferative state. Zebrafish imaging demonstrates that after extravasation, melanoma cells become pigmented and enact a gene expression program of melanocyte differentiation. We screened for microenvironmental factors leading to phenotype switching, and find that EDN3 induces a state that is both proliferative and differentiated. CRISPR-mediated inactivation of EDN3, or its synthetic enzyme ECE2, from the microenvironment abrogates phenotype switching and increases animal survival. These results demonstrate that after metastatic dissemination, the microenvironment provides signals to promote phenotype switching and provide proof that targeting tumour cell plasticity is a viable therapeutic opportunity.


Assuntos
Plasticidade Celular , Melanoma/patologia , Microambiente Tumoral , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Plasticidade Celular/genética , Proliferação de Células/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Modelos Biológicos , Metástase Neoplásica , Fenótipo , Microambiente Tumoral/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
11.
Cancer Res ; 75(20): 4272-4282, 2015 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-26282170

RESUMO

Metastasis is the defining feature of advanced malignancy, yet remains challenging to study in laboratory environments. Here, we describe a high-throughput zebrafish system for comprehensive, in vivo assessment of metastatic biology. First, we generated several stable cell lines from melanomas of transgenic mitfa-BRAF(V600E);p53(-/-) fish. We then transplanted the melanoma cells into the transparent casper strain to enable highly quantitative measurement of the metastatic process at single-cell resolution. Using computational image analysis of the resulting metastases, we generated a metastasis score, µ, that can be applied to quantitative comparison of metastatic capacity between experimental conditions. Furthermore, image analysis also provided estimates of the frequency of metastasis-initiating cells (∼1/120,000 cells). Finally, we determined that the degree of pigmentation is a key feature defining cells with metastatic capability. The small size and rapid generation of progeny combined with superior imaging tools make zebrafish ideal for unbiased high-throughput investigations of cell-intrinsic or microenvironmental modifiers of metastasis. The approaches described here are readily applicable to other tumor types and thus serve to complement studies also employing murine and human cell culture systems.


Assuntos
Modelos Biológicos , Neoplasias/patologia , Peixe-Zebra , Algoritmos , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Mutação , Metástase Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA