RESUMO
Fibrils of the hamster prion peptide (sHaPrP, sequence 108-144) were prepared in an acidic solution, and their structure was solved by cryogenic electron microscopy with a resolution of 2.23 Å based on the gold-standard Fourier shell correlation (FSC) curve. The fibril has a novel architecture that has never been found in other amyloid fibrils. Each fibril is assembled by four protofilaments (PFs) and has an ordered water channel in the center. Each protofilament contains three ß-strands (125-130, 133-135, and 138-141) arranged in an "R"-shaped construct. The structural data indicate that these three ß-strand segments are the most amyloidogenic region of the prion peptide/protein and might be the site of nucleation during fibrillization under conditions without denaturants.
Assuntos
Aquaporinas , Príons , Amiloide/química , Animais , Cricetinae , Microscopia Crioeletrônica , Peptídeos , Proteínas Priônicas , Príons/químicaRESUMO
We used the deep learning tool ProteinMPNN to redesign ubiquitin (Ub) as a specific and functionally stimulating/enhancing binder of the Rsp5 E3 ligase. We generated 20 extensively mutatedâup to 37 of 76 residuesârecombinant Ub variants (UbVs), named R1 to R20, displaying well-folded structures and high thermal stabilities. These UbVs can also form stable complexes with Rsp5, as predicted using AlphaFold2. Three of the UbVs bound to Rsp5 with low micromolar affinity, with R4 and R12 effectively enhancing the Rsp5 activity six folds. AlphaFold2 predicts that R4 and R12 bind to Rsp5's exosite in an identical manner to the Rsp5-Ub template, thereby allosterically activating Rsp5-Ub thioester formation. Thus, we present a virtual solution for rapidly and cost-effectively designing UbVs as functional modulators of Ub-related enzymes.