RESUMO
Childhood nephrotic syndrome is mainly caused by minimal change disease which is named because only subtle ultrastructural alteration could be observed at electron microscopic level in the pathological kidney. Glomerular podocytes are presumed to be the target cells whose protein sieving capability is compromised by a yet unidentified permeability perturbing factor. In a cohort of children with non-hereditary idiopathic nephrotic syndrome, we found the complement fragment C5a was elevated in their sera during active disease. Administration of recombinant C5a induced profound proteinuria and minimal change nephrotic syndrome in mice. Purified glomerular endothelial cells, instead of podocytes, were demonstrated to be responsible for the proteinuric effect elicited by C5a. Further studies depicted a signaling pathway involving Rho/Rho-associated kinase/myosin activation leading to endothelial cell contraction and cell adhesion complex breakdown. Significantly, application of Rho-associated kinase inhibitor, Y27632, prevented the protein leaking effects observed in both C5a-treated purified endothelial cells and mice. Taken together, our study identifies a previously unknown mechanism underlying nephrotic syndrome and provides a new insight toward identifying Rho-associated kinase inhibition as an alternative therapeutic option for nephrotic syndrome.
Assuntos
Amidas/farmacologia , Complemento C5a/efeitos adversos , Síndrome Nefrótica/complicações , Proteinúria/tratamento farmacológico , Piridinas/farmacologia , Proteínas Recombinantes/efeitos adversos , Quinases Associadas a rho/antagonistas & inibidores , Análise de Variância , Animais , Western Blotting , Criança , Complemento C5a/metabolismo , Citocinas/análise , Primers do DNA/genética , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Humanos , Técnicas Imunoenzimáticas , Glomérulos Renais/citologia , Glomérulos Renais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Microscopia Eletrônica de Transmissão , Proteinúria/etiologia , Proteinúria/metabolismo , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Quinases Associadas a rho/metabolismoRESUMO
Aging of functional ovaries occurs many years before aging of other organs in the female body. In recent years, a greater number of women continue to postpone their pregnancies to later stages in their lives, raising concerns of the effect of ovarian aging. Mitochondria play an important role in the connection between the aging granulosa cells and oocytes. However, the underlying mechanisms of mitochondrial dysfunction in these cells remain poorly understood. Therefore, we evaluated the molecular mechanism of the aging granulosa cells, including aspects such as accumulation of mitochondrial reactive oxygen species, reduction of mtDNA, imbalance of mitochondrial dynamics, and diminished cell proliferation. Here, we applied bioinformatics approaches, and integrated publicly available resources, to investigate the role of CREB1 gene expression in reproduction. Senescence hallmark enrichment and pathway analysis suggested that the downregulation of bioenergetic-related genes in CREB1. Gene expression analyses showed alterations in genes related to energy metabolism and ROS production in ovary tissue. We also demonstrate that the biogenesis of aging granulosa cells is subject to CREB1 binding to the PRKAA1 and PRKAA2 upstream promoters. In addition, cofactors that regulate biogenesis significantly increase the levels of SIRT1 and PPARGC1A mRNA in the aging granulosa cells. These findings demonstrate that CREB1 elevates an oxidative stress-induced senescence in granulosa cells by reducing the mitochondrial function.