Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 654: 393-401, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447577

RESUMO

When considering options for adapting forests under climate change, climate is treated as the dominant driver of forest growth, while soil properties are often ignored mainly due to shortage of accurate data. The effects of climate and soil on forest growth may vary due to local adaptation to both climate and soil, and these local adaptations might need to be considered when transferring seed provenances under climate change. Data from 29 provenance trials of Norway spruce (Picea abies (L.) Karst.) across a wide gradient of planting conditions in Austria was used to develop Structural Equation Models (SEMs) to quantified the role of climatic and soil drivers and their interactions on juvenile growth performance and to test if provenance origin affects the relative importance of these drivers. Climate and soil of the planting site location were found to have similar direct effects on juvenile tree growth, however, climate was found to be more important because of additional indirect effects via interactions with soil parameters. Notably, the relative effects of climate and soil vary among different provenance groups. Climate constraints are dominant for seed sources originating from colder and/or high altitude locations, while test site climate and soil are equally important contributors of growth for provenances originating from warmer origin and lower elevation sites. Together with the better growth performance of the latter provenance group their plasticity allows them to utilize a wide range of soil conditions.


Assuntos
Adaptação Fisiológica , Mudança Climática , Florestas , Picea/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Solo/química , Altitude , Áustria , Modelos Biológicos , Especificidade da Espécie
2.
Evol Appl ; 10(1): 25-38, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28035233

RESUMO

Predicting species distribution changes in global warming requires an understanding of how climatic constraints shape the genetic variation of adaptive traits and force local adaptations. To understand the genetic capacity of Norway spruce populations in Central Europe, we analyzed the variation in tree heights at the juvenile stage in common garden experiments established from the species' warm-dry to cold-moist distribution limits. We report the following findings: First, 47% of the total tree height variation at trial sites is attributable to the tree populations irrespective of site climate. Second, tree height variation within populations is higher at cold-moist trial sites than at warm-dry sites and higher within populations originating from cold-moist habitats than from warm-dry habitats. Third, for tree ages of 7-15 years, the variation within populations increases at cold-moist trial sites, whereas it remains constant at warm-dry sites. Fourth, tree height distributions are right-skewed at cold-moist trial sites, whereas they are nonskewed, but platykurtic at warm-dry sites. Our results suggest that in cold environments, climatic conditions impose stronger selection and probably restrict the distribution of spruce, whereas at the warm distribution limit, the species' realized niche might rather be controlled by external drivers, for example, forest insects.

3.
Life Sci ; 136: 1-6, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26135622

RESUMO

AIMS: Patients with chronic kidney disease (CKD) have a high risk to develop atherosclerosis. The capacity of high-density lipoproteins (HDL) or serum to accept cholesterol from macrophages and the capacity of macrophages to export excess cholesterol are critical for the atheroprotective role of reverse cholesterol transport. HDL cholesterol acceptor capacity was reported to be decreased in middle aged hemodialysis patients, but the role of confounding factors remains unclear. MAIN METHODS: We measured the cholesterol acceptor capacity (CAC) of HDL or serum in 12 pediatric and 17 young adult patients with CKD stages 3-5, 14 young adult hemodialysis patients and 15 adult renal transplant recipients without associated diseases and matched controls using THP-1 macrophages. Moreover we studied the cholesterol export capacity (CEC) of patients' monocyte-derived macrophages (HMDMs) to control serum or HDL. KEY FINDINGS: In adults with CKD stages 3-5 serum CAC was slightly increased, whereas CEC of HMDMs was unaltered in both, adult and pediatric patients. In hemodialysis patients, however, serum CAC was markedly reduced to 85±11% of control (p<0.001), presumably due to low serum apolipoprotein A-I. Interestingly, CEC of HMDMs from dialysis patients was increased. In transplant patients no alterations were found. SIGNIFICANCE: CKD without hemodialysis does not reduce cholesterol export from macrophages. Hemodialysis patients might benefit from therapies aiming to restore serum CAC by increasing apolipoprotein A-I. The enhanced export of cholesterol by HMDMs from dialysis patients may represent an adaptive response.


Assuntos
Colesterol/metabolismo , Macrófagos/metabolismo , Insuficiência Renal Crônica/metabolismo , Adolescente , Adulto , Estudos de Casos e Controles , Células Cultivadas , Criança , Feminino , Humanos , Metabolismo dos Lipídeos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA