Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(6): 3180-3198, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38407477

RESUMO

Mobile genetic elements play an important role in the acquisition of antibiotic and biocide resistance, especially through the formation of resistance islands in bacterial chromosomes. We analyzed the contribution of Tn7-like transposons to island formation and diversification in the nosocomial pathogen Acinetobacter baumannii and identified four separate families that recognize different integration sites. One integration site is within the comM gene and coincides with the previously described Tn6022 elements suggested to account for the AbaR resistance island. We established Tn6022 in a heterologous E. coli host and confirmed basic features of transposition into the comM attachment site and the use of a novel transposition protein. By analyzing population features within Tn6022 elements we identified two potential novel transposon-encoded diversification mechanisms with this dynamic genetic island. The activities of these diversification features were confirmed in E. coli. One was a novel natural gain-of-activity allele that could function to broaden transposition targeting. The second was a transposon-encoded hybrid dif-like site that parasitizes the host dimer chromosome resolution system to function with its own tyrosine recombinase. This work establishes a highly active Tn7-like transposon that harnesses novel features allowing the spread and diversification of genetic islands in pathogenic bacteria.


Assuntos
Acinetobacter baumannii , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana , Variação Genética , Ilhas Genômicas , Acinetobacter baumannii/genética , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Variação Genética/genética , Genoma Bacteriano/genética , Ilhas Genômicas/genética
2.
Environ Microbiol ; 24(11): 5188-5201, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054699

RESUMO

Sediment microorganisms influence global climate and redox by altering rates of organic carbon burial. However, the activity and ecology of benthic microorganisms are poorly characterized, especially in the deep sea. Here, we conducted nearly 300 stable isotope tracer experiments in sediments from the Pacific and Atlantic oceans (100-4500 m water depth) to determine the rates, spatial distribution, and physicochemical controls on microbial total anabolic activity, nitrogen fixation, and inorganic/organic carbon uptake. Using correlative and manipulative approaches, we find that total activity is limited primarily by organic carbon and/or energy. Activity correlates significantly with distance from shore, sediment depth, C:N ratios, and overlying chlorophyll concentrations and is stimulated by carbon but not nitrogen additions. Consistent with this, nitrogen fixation was undetected despite relatively low concentrations of porewater ammonium and the previous detection of nifH genes. Inorganic carbon uptake accounted for 7%-55% of carbon assimilation per sample (median 21%), suggesting chemoautotrophy is an important and unappreciated source of labile carbon in deep-sea sediments. Community 16S rRNA was dominated by Bacteria (<2% Archaea), primarily Desulfobacterales of the Deltaproteobacteria. Leveraging our findings, we modelled global benthic microbial activity through geologic time and find the potential for significant shifts in total activity with supercontinental cycles.


Assuntos
Archaea , Sedimentos Geológicos , RNA Ribossômico 16S/genética , Sedimentos Geológicos/microbiologia , Archaea/genética , Bactérias/genética , Carbono , Filogenia
3.
Bioinformatics ; 37(16): 2289-2298, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-33580675

RESUMO

MOTIVATION: Linking microbial community members to their ecological functions is a central goal of environmental microbiology. When assigned taxonomy, amplicon sequences of metabolic marker genes can suggest such links, thereby offering an overview of the phylogenetic structure underpinning particular ecosystem functions. However, inferring microbial taxonomy from metabolic marker gene sequences remains a challenge, particularly for the frequently sequenced nitrogen fixation marker gene, nitrogenase reductase (nifH). Horizontal gene transfer in recent nifH evolutionary history can confound taxonomic inferences drawn from the pairwise identity methods used in existing software. Other methods for inferring taxonomy are not standardized and require manual inspection that is difficult to scale. RESULTS: We present Phylogenetic Placement for Inferring Taxonomy (PPIT), an R package that infers microbial taxonomy from nifH amplicons using both phylogenetic and sequence identity approaches. After users place query sequences on a reference nifH gene tree provided by PPIT (n = 6317 full-length nifH sequences), PPIT searches the phylogenetic neighborhood of each query sequence and attempts to infer microbial taxonomy. An inference is drawn only if references in the phylogenetic neighborhood are: (1) taxonomically consistent and (2) share sufficient pairwise identity with the query, thereby avoiding erroneous inferences due to known horizontal gene transfer events. We find that PPIT returns a higher proportion of correct taxonomic inferences than BLAST-based approaches at the cost of fewer total inferences. We demonstrate PPIT on deep-sea sediment and find that Deltaproteobacteria are the most abundant potential diazotrophs. Using this dataset, we show that emending PPIT inferences based on visual inspection of query sequence placement can achieve taxonomic inferences for nearly all sequences in a query set. We additionally discuss how users can apply PPIT to the analysis of other marker genes. AVAILABILITY AND IMPLEMENTATION: PPIT is freely available to noncommercial users at https://github.com/bkapili/ppit. Installation includes a vignette that demonstrates package use and reproduces the nifH amplicon analysis discussed here. The raw nifH amplicon sequence data have been deposited in the GenBank, EMBL and DDBJ databases under BioProject number PRJEB37167. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

4.
Mol Microbiol ; 93(6): 1084-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25091064

RESUMO

Horizontally acquired genetic information in bacterial chromosomes accumulates in blocks termed genomic islands. Tn7-like transposons form genomic islands at a programmed insertion site in bacterial chromosomes, attTn7. Transposition involves five transposon-encoded genes (tnsABCDE) including an atypical heteromeric transposase. One transposase subunit, TnsB, is from the large family of bacterial transposases, the second, TnsA, is related to endonucleases. A regulator protein, TnsC, functions with different target site selecting proteins to recognize different targets. TnsD directs transposition into attTn7, while TnsE encourages horizontal transmission by targeting mobile plasmids. Recent work suggests that distantly related elements with heteromeric transposases exist with alternate targeting pathways that also facilitate the formation of genomic islands. Tn6230 and related elements can be found at a single position in a gene of unknown function (yhiN) in various bacteria as well as in mobile plasmids. Another group we term Tn6022-like elements form pathogenicity islands in the Acinetobacter baumannii comM gene. We find that Tn6022-like elements also appear to have an uncharacterized mechanism for provoking internal transposition and deletion events that serve as a conduit for evolving new elements. As a group, heteromeric transposase elements utilize diverse target site selection mechanisms adapted to the spread and rearrangement of genomic islands.


Assuntos
Bactérias/enzimologia , Ilhas Genômicas , Transposases/metabolismo , Bactérias/genética , Genoma Bacteriano , Plasmídeos/genética
5.
Front Microbiol ; 14: 1312843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249476

RESUMO

Macroalgae, commonly known as seaweed, are foundational species in coastal ecosystems and contribute significantly to coastal primary production globally. However, the impact of macroalgal decomposition on benthic biological nitrogen fixation (BNF) after deposition to the seafloor remains largely unexplored. In this study, we measure BNF rates at three different sites at the Big Fisherman's Cove on Santa Catalina Island, CA, USA, which is representative of globally distributed rocky bottom macroalgal habitats. Unamended BNF rates varied among sites (0.001-0.05 nmol N g-1 h -1) and were generally within the lower end of previously reported ranges. We hypothesized that the differences in BNF between sites were linked to the availability of organic matter. Indeed, additions of glucose, a labile carbon source, resulted in 2-3 orders of magnitude stimulation of BNF rates in bottle incubations of sediment from all sites. To assess the impact of complex, autochthonous organic matter, we simulated macroalgal deposition and remineralization with additions of brown (i.e., Macrocystis pyrifera and Dictyopteris), green (i.e., Codium fragile), and red (i.e., Asparagopsis taxiformis) macroalgae. While brown and green macroalgal amendments resulted in 53- to 520-fold stimulation of BNF rates-comparable to the labile carbon addition-red alga was found to significantly inhibit BNF rates. Finally, we employed nifH sequencing to characterize the diazotrophic community associated with macroalgal decomposition. We observed a distinct community shift in potential diazotrophs from primarily Gammaproteobacteria in the early stages of remineralization to a community dominated by Deltaproteobacteria (e.g., sulfate reducers), Bacteroidia, and Spirochaeta toward the latter phase of decomposition of brown, green, and red macroalgae. Notably, the nifH-containing community associated with red macroalgal detritus was distinct from that of brown and green macroalgae. Our study suggests coastal benthic diazotrophs are limited by organic carbon and demonstrates a significant and phylum-specific effect of macroalgal loading on benthic microbial communities.

6.
ISME J ; 14(4): 971-983, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31907368

RESUMO

Diazotrophic microorganisms regulate marine productivity by alleviating nitrogen limitation. However, we know little about the identity and activity of diazotrophs in deep-sea sediments, a habitat covering nearly two-thirds of the planet. Here, we identify candidate diazotrophs from Pacific Ocean sediments collected at 2893 m water depth using 15N-DNA stable isotope probing and a novel pipeline for nifH sequence analysis. Together, these approaches detect an unexpectedly diverse assemblage of active diazotrophs, including members of the Acidobacteria, Firmicutes, Nitrospirae, Gammaproteobacteria, and Deltaproteobacteria. Deltaproteobacteria, predominately members of the Desulfobacterales and Desulfuromonadales, are the most abundant diazotrophs detected, and display the most microdiversity of associated nifH sequences. Some of the detected lineages, including those within the Acidobacteria, have not previously been shown to fix nitrogen. The diazotrophs appear catabolically diverse, with the potential for using oxygen, nitrogen, iron, sulfur, and carbon as terminal electron acceptors. Therefore, benthic diazotrophy may persist throughout a range of geochemical conditions and provide a stable source of fixed nitrogen over geologic timescales. Our results suggest that nitrogen-fixing communities in deep-sea sediments are phylogenetically and catabolically diverse, and open a new line of inquiry into the ecology and biogeochemical impacts of deep-sea microorganisms.


Assuntos
Sedimentos Geológicos/microbiologia , Bactérias/genética , Carbono , Ecossistema , Nitrogênio , Fixação de Nitrogênio/genética , Oceano Pacífico , Filogenia , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA