Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(6)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875739

RESUMO

Effective adoptive T cell therapy (ACT) comprises the killing of cancer cells through the therapeutic use of transferred T cells. One of the main ACT approaches is chimeric antigen receptor (CAR) T cell therapy. CAR T cells mediate MHC-unrestricted tumor cell killing by enabling T cells to bind target cell surface antigens through a single-chain variable fragment (scFv) recognition domain. Upon engagement, CAR T cells form a non-classical immune synapse (IS), required for their effector function. These cells then mediate their anti-tumoral effects through the perforin and granzyme axis, the Fas and Fas ligand axis, as well as the release of cytokines to sensitize the tumor stroma. Their persistence in the host and functional outputs are tightly dependent on the receptor's individual components-scFv, spacer domain, and costimulatory domains-and how said component functions converge to augment CAR T cell performance. In this review, we bring forth the successes and limitations of CAR T cell therapy. We delve further into the current understanding of how CAR T cells are designed to function, survive, and ultimately mediate their anti-tumoral effects.


Assuntos
Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Animais , Proteína Ligante Fas/metabolismo , Granzimas/metabolismo , Humanos , Neoplasias/imunologia , Perforina/metabolismo , Transdução de Sinais , Linfócitos T/transplante , Receptor fas/metabolismo
2.
J Immunother Cancer ; 11(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37208128

RESUMO

BACKGROUND: Melanoma is an immune sensitive disease, as demonstrated by the activity of immune check point blockade (ICB), but many patients will either not respond or relapse. More recently, tumor infiltrating lymphocyte (TIL) therapy has shown promising efficacy in melanoma treatment after ICB failure, indicating the potential of cellular therapies. However, TIL treatment comes with manufacturing limitations, product heterogeneity, as well as toxicity problems, due to the transfer of a large number of phenotypically diverse T cells. To overcome said limitations, we propose a controlled adoptive cell therapy approach, where T cells are armed with synthetic agonistic receptors (SAR) that are selectively activated by bispecific antibodies (BiAb) targeting SAR and melanoma-associated antigens. METHODS: Human as well as murine SAR constructs were generated and transduced into primary T cells. The approach was validated in murine, human and patient-derived cancer models expressing the melanoma-associated target antigens tyrosinase-related protein 1 (TYRP1) and melanoma-associated chondroitin sulfate proteoglycan (MCSP) (CSPG4). SAR T cells were functionally characterized by assessing their specific stimulation and proliferation, as well as their tumor-directed cytotoxicity, in vitro and in vivo. RESULTS: MCSP and TYRP1 expression was conserved in samples of patients with treated as well as untreated melanoma, supporting their use as melanoma-target antigens. The presence of target cells and anti-TYRP1 × anti-SAR or anti-MCSP × anti-SAR BiAb induced conditional antigen-dependent activation, proliferation of SAR T cells and targeted tumor cell lysis in all tested models. In vivo, antitumoral activity and long-term survival was mediated by the co-administration of SAR T cells and BiAb in a syngeneic tumor model and was further validated in several xenograft models, including a patient-derived xenograft model. CONCLUSION: The SAR T cell-BiAb approach delivers specific and conditional T cell activation as well as targeted tumor cell lysis in melanoma models. Modularity is a key feature for targeting melanoma and is fundamental towards personalized immunotherapies encompassing cancer heterogeneity. Because antigen expression may vary in primary melanoma tissues, we propose that a dual approach targeting two tumor-associated antigens, either simultaneously or sequentially, could avoid issues of antigen heterogeneity and deliver therapeutic benefit to patients.


Assuntos
Anticorpos Biespecíficos , Melanoma , Humanos , Camundongos , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Linfócitos T , Recidiva Local de Neoplasia , Antígenos de Neoplasias
3.
Sci Adv ; 7(24)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108220

RESUMO

CAR T cell therapy remains ineffective in solid tumors, due largely to poor infiltration and T cell suppression at the tumor site. T regulatory (Treg) cells suppress the immune response via inhibitory factors such as transforming growth factor-ß (TGF-ß). Treg cells expressing the C-C chemokine receptor 8 (CCR8) have been associated with poor prognosis in solid tumors. We postulated that CCR8 could be exploited to redirect effector T cells to the tumor site while a dominant-negative TGF-ß receptor 2 (DNR) can simultaneously shield them from TGF-ß. We identified that CCL1 from activated T cells potentiates a feedback loop for CCR8+ T cell recruitment to the tumor site. This sustained and improved infiltration of engineered T cells synergized with TGF-ß shielding for improved therapeutic efficacy. Our results demonstrate that addition of CCR8 and DNR into CAR T cells can render them effective in solid tumors.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Linfócitos T Reguladores , Fator de Crescimento Transformador beta/farmacologia
4.
Nat Biomed Eng ; 5(11): 1246-1260, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34083764

RESUMO

The efficacy of adoptive cell therapy for solid tumours is hampered by the poor accumulation of the transferred T cells in tumour tissue. Here, we show that forced expression of C-X-C chemokine receptor type 6 (whose ligand is highly expressed by human and murine pancreatic cancer cells and tumour-infiltrating immune cells) in antigen-specific T cells enhanced the recognition and lysis of pancreatic cancer cells and the efficacy of adoptive cell therapy for pancreatic cancer. In mice with subcutaneous pancreatic tumours treated with T cells with either a transgenic T-cell receptor or a murine chimeric antigen receptor targeting the tumour-associated antigen epithelial cell adhesion molecule, and in mice with orthotopic pancreatic tumours or patient-derived xenografts treated with T cells expressing a chimeric antigen receptor targeting mesothelin, the T cells exhibited enhanced intratumoral accumulation, exerted sustained anti-tumoral activity and prolonged animal survival only when co-expressing C-X-C chemokine receptor type 6. Arming tumour-specific T cells with tumour-specific chemokine receptors may represent a promising strategy for the realization of adoptive cell therapy for solid tumours.


Assuntos
Imunoterapia Adotiva , Neoplasias Pancreáticas , Receptores CXCR6/metabolismo , Linfócitos T , Animais , Terapia Baseada em Transplante de Células e Tecidos , Mesotelina , Camundongos , Neoplasias Pancreáticas/terapia , Receptores de Quimiocinas/genética
5.
Clin Cancer Res ; 25(19): 5890-5900, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31285373

RESUMO

PURPOSE: Genetically engineered T cells are powerful anticancer treatments but are limited by safety and specificity issues. We herein describe an MHC-unrestricted modular platform combining autologous T cells, transduced with a targetable synthetic agonistic receptor (SAR), with bispecific antibodies (BiAb) that specifically recruit and activate T cells for tumor killing. EXPERIMENTAL DESIGN: BiAbs of different formats were generated by recombinant expression. T cells were retrovirally transduced with SARs. T-cell activation, proliferation, differentiation, and T-cell-induced lysis were characterized in three murine and human tumor models in vitro and in vivo. RESULTS: Murine T cells transduced with SAR composed of an extracellular domain EGFRvIII fused to CD28 and CD3ζ signaling domains could be specifically recruited toward murine tumor cells expressing EpCAM by anti-EGFRvIII × anti-EpCAM BiAb. BiAb induced selective antigen-dependent activation, proliferation of SAR T cells, and redirected tumor cell lysis. Selectivity was dependent on the monovalency of the antibody for EGFRvIII. We identified FAS ligand as a major mediator of killing utilized by the T cells. Similarly, human SAR T cells could be specifically redirected toward mesothelin-expressing human pancreatic cancer cells. In vivo, treatment with SAR T cells and BiAb mediated antitumoral activity in three human pancreatic cancer cell xenograft models. Importantly, SAR activity, unlike CAR activity, was reversible in vitro and in vivo. CONCLUSIONS: We describe a novel ACT platform with antitumor activity in murine and human tumor models with a distinct mode of action that combines adoptive T-cell therapy with bispecific antibodies.


Assuntos
Anticorpos Biespecíficos/imunologia , Antígenos CD28/imunologia , Complexo CD3/imunologia , Receptores ErbB/imunologia , Imunoterapia Adotiva/métodos , Neoplasias Pancreáticas/terapia , Linfócitos T/imunologia , Animais , Anticorpos Biespecíficos/genética , Molécula de Adesão da Célula Epitelial/imunologia , Molécula de Adesão da Célula Epitelial/metabolismo , Humanos , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Mesotelina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Neoplasias Pancreáticas/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA