Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
FASEB J ; 30(5): 2058-63, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26873936

RESUMO

Platelet-derived exosomes mediate platelet atherogenic interactions with endothelial cells and monocytes. A new method for isolation of plasma platelet-derived exosomes is described and used to examine effects of aging and aspirin on exosome cargo proteins. Exosome secretion by purified platelets in vitro did not increase after exposure to thrombin or collagen, as assessed by exosome counts and quantification of the CD81 exosome marker. Thrombin and collagen increased exosome content of α-granule chemokines CXCL4 and CXCL7 and cytoplasmic high-mobility group box 1 (HMGB1) protein, but not membrane platelet glycoprotein VI (GPVI), with dependence on extracellular calcium. Aspirin consumption significantly blocked thrombin- and collagen-induced increases in exosome cargo levels of chemokines and HMGB1, without altering total exosome secretion or GPVI cargo. Plasma platelet-derived exosomes, enriched by absorption with mouse antihuman CD42b [platelet glycoprotein Ib (GPIb)] mAb, had sizes and cargo protein contents similar to those of exosomes from purified platelets. The plasma platelet-derived exosome number is lower and its chemokine and HMGB1 levels higher after age 65 yr. Aspirin consumption significantly suppressed cargo protein levels of plasma platelet-derived exosomes without altering total levels of exosomes. Cargo proteins of human plasma platelet-derived exosomes may biomark platelet abnormalities and in vivo effects of drugs.- Goetzl, E. J., Goetzl, L., Karliner, J. S., Tang, N., Pulliam, L. Human plasma platelet-derived exosomes: effects of aspirin.


Assuntos
Aspirina/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/fisiologia , Exossomos/fisiologia , Inibidores da Agregação Plaquetária/farmacologia , Células Cultivadas , Exossomos/efeitos dos fármacos , Humanos
2.
J Cardiovasc Pharmacol ; 67(1): 47-56, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26322923

RESUMO

AIMS: We recently reported that immunosuppression with FTY720 improves cardiac function and extends longevity in Hypomorphic ApoE mice deficient in scavenger receptor Type-BI expression, also known as the HypoE/SR-BI(­/­) mouse model of diet-induced coronary atherosclerosis and myocardial infarction (MI). In this study, we tested the impact of FTY720 on cardiac dysfunction in HypoE/SR-BI(­/­) mice that survive MI and subsequently develop chronic heart failure. METHODS/RESULTS: HypoE/SR-BI(­/­) mice were bred to Mx1-Cre transgenic mice, and offspring were fed a high-fat diet (HFD) for 3.5 weeks to provoke hyperlipidemia, coronary atherosclerosis, and recurrent MIs. In contrast to our previous study, hyperlipidemia was rapidly reversed by inducible Cre-mediated gene repair of the HypoE allele and switching mice to a normal chow diet. Mice that survived the period of HFD were subsequently given oral FTY720 in drinking water or not, and left ventricular (LV) function was monitored using serial echocardiography for up to 15 weeks. In untreated mice, LV performance progressively deteriorated. Although FTY720 treatment did not initially prevent a decline of heart function among mice 6 weeks after Cre-mediated gene repair, it almost completely restored normal LV function in these mice by 15 weeks. Reversal of heart failure did not result from reduced atherosclerosis as the burden of aortic and coronary atherosclerosis actually increased to similar levels in both groups of mice. Rather, FTY720 caused systemic immunosuppression as assessed by reduced numbers of circulating T and B lymphocytes. In contrast, FTY720 did not enhance the loss of T cells or macrophages that accumulated in the heart during the HFD feeding period, but it did enhance the loss of B cells soon after plasma lipid lowering. Moreover, FTY720 potently reduced the expression of matrix metalloproteinase-2 and genes involved in innate immunity-associated inflammation in the heart. CONCLUSIONS: Our data demonstrate that immunosuppression with FTY720 prevents postinfarction myocardial remodeling and chronic heart failure.


Assuntos
Apolipoproteínas E/deficiência , Doença da Artéria Coronariana/tratamento farmacológico , Cloridrato de Fingolimode/uso terapêutico , Imunossupressores/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Receptores Depuradores Classe B/biossíntese , Animais , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/mortalidade , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/mortalidade , Taxa de Sobrevida/tendências
3.
Biochim Biophys Acta ; 1831(1): 203-12, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22735359

RESUMO

Activation of sphingosine kinase/sphingosine 1-phosphate (SK/S1P)-mediated signaling has emerged as a critical cardioprotective pathway in response to acute ischemia/reperfusion injury. S1P is released in both ischemic pre- and post-conditioning. Application of exogenous S1P to cultured cardiac myocytes subjected to hypoxia or treatment of isolated hearts either before ischemia or at the onset of reperfusion exerts prosurvival effects. Synthetic congeners of S1P such as FTY720 mimic these responses. Gene targeted mice null for the SK1 isoform whose hearts are subjected to ischemia/reperfusion injury exhibit increased infarct size and respond poorly either to ischemic pre- or postconditioning. Measurements of cardiac SK activity and S1P parallel these observations. Experiments in SK2 knockout mice have revealed that this isoform is necessary for survival in the heart. High density lipoprotein (HDL) is a major carrier of S1P, and studies of hearts in which selected S1P receptors have been inhibited implicate the S1P cargo of HDL in cardioprotection. Inhibition of S1P lyase, an endogenous enzyme that degrades S1P, also leads to cardioprotection. These observations have considerable relevance for future therapeutic approaches to acute and chronic myocardial injury. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.


Assuntos
Lisofosfolipídeos/metabolismo , Miocárdio/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/análogos & derivados , Aldeído Liases/metabolismo , Animais , Cardiotônicos/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Esfingosina/metabolismo
4.
J Cardiovasc Pharmacol ; 63(5): 406-11, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24805144

RESUMO

Cardiovascular disease is the leading cause of death in Western countries. A major limitation of current treatments is the inability to efficiently repair or replace dead myocardium. Recently, stem cell-based therapies have been explored as an avenue to circumvent current therapeutic limitations. Overall, these therapies seem to result in small improvements in the contractile function of the heart. The exact mechanism(s) of action that underlie these improvements remain unknown, and it is believed that paracrine effects play a significant role. Previously, we had reported that an extract derived from bone marrow cells, in the absence of any live cell, contained cardioprotective soluble factors. In this study, we identify IL-15 as a putative cardioprotectant within the bone marrow cells paracrine profile. Using an in vitro culture system, we assessed the ability of IL-15 to protect cardiomyocytes under hypoxic conditions. For the first time, we have identified IL-15 receptors on the surface of cardiomyocytes and delineated the signaling system by which hypoxic cardiomyocytes may be protected from cellular death and rescued from oxidative stress with IL-15 treatment.


Assuntos
Interleucina-15/fisiologia , Miócitos Cardíacos/fisiologia , Transdução de Sinais/fisiologia , Animais , Hipóxia Celular , Sobrevivência Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Receptores de Interleucina-15/efeitos dos fármacos , Receptores de Interleucina-15/metabolismo , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais/efeitos dos fármacos
5.
J Cardiovasc Pharmacol ; 63(2): 132-143, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24508946

RESUMO

FTY720, an analogue of sphingosine-1-phosphate, is cardioprotective during acute injury. Whether long-term FTY720 affords cardioprotection is unknown. Here, we report the effects of oral FTY720 on ischemia/reperfusion injury and in hypomorphic apoE mice deficient in SR-BI receptor expression (ApoeR61(h/h)/SRB1(-/- mice), a model of diet-induced coronary atherosclerosis and heart failure. We added FTY720 (0.3 mg·kg(-1)·d(-1)) to the drinking water of C57BL/6J mice. After ex vivo cardiac ischemia/reperfusion injury, these mice had significantly improved left ventricular (LV) developed pressure and reduced infarct size compared with controls. Subsequently, ApoeR61(h/h)/SRB1(-/-) mice fed a high-fat diet for 4 weeks were treated or not with oral FTY720 (0.05 mg·kg(-1)·d(-1)). This sharply reduced mortality (P < 0.02) and resulted in better LV function and less LV remodeling compared with controls without reducing hypercholesterolemia and atherosclerosis. Oral FTY720 reduced the number of blood lymphocytes and increased the percentage of CD4+Foxp3+ regulatory T cells (Tregs) in the circulation, spleen, and lymph nodes. FTY720-treated mice exhibited increased TGF-ß and reduced IFN-γ expression in the heart. Also, CD4 expression was increased and strongly correlated with molecules involved in natural Treg activity, such as TGF-ß and GITR. Our data suggest that long-term FTY720 treatment enhances LV function and increases longevity in mice with heart failure. These benefits resulted not from atheroprotection but from systemic immunosuppression and a moderate reduction of inflammation in the heart.


Assuntos
Apolipoproteínas E/genética , Doença da Artéria Coronariana/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico , Propilenoglicóis/farmacologia , Esfingosina/análogos & derivados , Animais , Cardiotônicos/administração & dosagem , Cardiotônicos/farmacologia , Doença da Artéria Coronariana/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Cloridrato de Fingolimode , Imunossupressores/administração & dosagem , Imunossupressores/farmacologia , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Propilenoglicóis/administração & dosagem , Esfingosina/administração & dosagem , Esfingosina/farmacologia , Taxa de Sobrevida , Linfócitos T Reguladores/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos
6.
Cancer Cell ; 4(3): 191-6, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14522253

RESUMO

Exposure to second hand smoke (SHS) is believed to cause lung cancer. Pathological angiogenesis is a requisite for tumor growth. Lewis lung cancer cells were injected subcutaneously into mice, which were then exposed to sidestream smoke (SHS) or clean room air and administered vehicle, cerivastatin, or mecamylamine. SHS significantly increased tumor size, weight, capillary density, VEGF and MCP-1 levels, and circulating endothelial progenitor cells (EPC). Cerivastatin (an inhibitor of HMG-coA reductase) or mecamylamine (an inhibitor of nicotinic acetylcholine receptors) suppressed the effect of SHS to increase tumor size and capillary density. Cerivastatin reduced MCP-1 levels, whereas mecamylamine reduced VEGF levels and EPC. These studies reveal that SHS promotes tumor angiogenesis and growth. These effects of SHS are associated with increases in plasma VEGF and MCP-1 levels, and EPC, mediated in part by isoprenylation and nicotinic acetylcholine receptors.


Assuntos
Carcinoma Pulmonar de Lewis/etiologia , Neovascularização Patológica/etiologia , Nicotina/toxicidade , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Quimiocina CCL2/metabolismo , Células Endoteliais/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Mecamilamina/metabolismo , Camundongos , Piridinas/metabolismo , Receptores Nicotínicos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 300(5): H1753-61, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21335477

RESUMO

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that promotes cardiomyocyte survival and contributes to ischemic preconditioning. S1P lyase (SPL) is a stress-activated enzyme responsible for irreversible S1P catabolism. We hypothesized that SPL contributes to oxidative stress by depleting S1P pools available for cardioprotective signaling. Accordingly, we evaluated SPL inhibition as a strategy for reducing cardiac ischemia-reperfusion (I/R) injury. We measured SPL expression and enzyme activity in murine hearts. Basal SPL activity was low in wild-type cardiac tissue but was activated in response to 50 min of ischemia (n = 5, P < 0.01). Hearts of heterozygous SPL knockout mice exhibited reduced SPL activity, elevated S1P levels, smaller infarct size, and increased functional recovery after I/R compared with littermate controls (n = 5, P < 0.01). The small molecule tetrahydroxybutylimidazole (THI) is a Federal Drug Administration-approved food additive that inhibits SPL. When given overnight at 25 mg/l in drinking water, THI raised S1P levels and reduced SPL activity (n = 5, P < 0.01). THI reduced infarct size and enhanced hemodynamic recovery in response to 50 min of ischemia and to 40 min of reperfusion in ex vivo hearts (n = 7, P < .01). These data correlated with an increase in MAP kinase-interacting serine/threonine kinase 1, eukaryotic translation initiation factor 4E, and ribosomal protein S6 phosphorylation levels after I/R, suggesting that SPL inhibition enhances protein translation. Pretreatment with an S1P1 and S1P3 receptor antagonist partially reversed the effects of THI. These results reveal, for the first time, that SPL is an ischemia-induced enzyme that can be targeted as a novel strategy for preventing cardiac I/R injury.


Assuntos
Aldeído Liases/antagonistas & inibidores , Aldeído Liases/fisiologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Aldeído Liases/genética , Animais , Inibidores Enzimáticos/uso terapêutico , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Mutação/genética , Miocárdio/metabolismo , Estresse Oxidativo/fisiologia , Esfingosina/análogos & derivados , Esfingosina/metabolismo
8.
Int J Exp Pathol ; 92(1): 50-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21039989

RESUMO

Coronary artery ectasia (CAE) is generally diagnosed in patients undergoing arteriography for presumptive atherosclerotic coronary artery disease. CAE is commonly considered as a variant of atherosclerotic disease; however, recent studies suggest that CAE is the result of a systemic vascular disorder. There is increasing evidence that aneurysmal vascular disease is a systemic disorder characterized by enhanced expression of pro-inflammatory cytokines and increased synthesis of enzymes capable of degrading elastin and other components of the vascular wall. Matrix metalloproteinase-2 degrades a number of extracellular substrates, including elastin and has been shown to play a critical role in the development of abdominal aortic aneurysms. This study characterizes the development of CAE in a unique murine transgenic model with cardiac-specific expression of active MMP-2. Transgenic mice were engineered to express an active form of MMP-2 under control of the α-myosin heavy chain promoter. Coronary artery diameters were quantified, along with studies of arterial structure, elastin integrity and vascular expression of the MMP-2 transgene. Latex casts quantified total coronary artery volumes and arterial branching. Mid-ventricular coronary luminal areas were increased in the MMP-2 transgenics, coupled with foci of aneurysmal dilation, ectasia and perivascular fibrosis. There was no evidence for atherogenesis. Coronary vascular elastin integrity was compromised and coupled with inflammatory cell infiltration. Latex casts of the coronary arteries displayed ectasia with fusiform dilatation. The MMP-2 transgenic closely replicates human CAE and supports a critical and initiating role for this enzyme in the pathogenesis of this disorder.


Assuntos
Aneurisma Coronário/enzimologia , Doença da Artéria Coronariana/enzimologia , Doença da Artéria Coronariana/patologia , Vasos Coronários/patologia , Metaloproteinase 2 da Matriz/metabolismo , Miocárdio/enzimologia , Animais , Aneurisma Coronário/patologia , Dilatação Patológica/enzimologia , Dilatação Patológica/patologia , Modelos Animais de Doenças , Metaloproteinase 2 da Matriz/genética , Camundongos , Camundongos Transgênicos
10.
Am J Physiol Heart Circ Physiol ; 298(3): H1022-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20061542

RESUMO

The lipid mediator sphingosine 1-phosphate (S1P) confers survival benefits in cardiomyocytes and isolated hearts subjected to oxidative stress. High-density lipoprotein (HDL) is a major carrier of S1P in the serum, but whether HDL-associated S1P directly mediates survival in a preparation composed exclusively of cardiomyocytes has not been demonstrated. Accordingly, we tested the hypothesis that signal activation and survival during simulated ischemia-reperfusion injury in response to HDL require lipoprotein-associated S1P. As a model, we used adult mouse cardiomyocytes subjected to hypoxia-reoxygenation. Cells were treated or not with autologous mouse HDL, which significantly increased myocyte viability as measured by trypan blue exclusion. This survival effect was abrogated by the S1P(1) and SIP(3) receptor antagonist VPC 23019. The selective S1P(3) antagonist CAY10444, the G(i) antagonist pertussis toxin, the MEK (MAPK/ERK) kinase inhibitor PD-98059, and the phosphoinositide-3 kinase inhibitor wortmannin also inhibited the prosurvival effect of HDL. We observed that HDL activated both Akt (protein kinase B) and the MEK1/2-ERK1/2 pathway and also stimulated phosphorylation of glycogen synthase kinase-3beta. ERK1/2 activation was through an S1P(1) subtype receptor-G(i) protein-dependent pathway, whereas the activation of Akt was inhibited by CAY10444, indicating mediation by S1P(3) subtype receptors. We conclude that HDL, via its cargo of S1P, can directly protect cardiomyocytes against simulated oxidative injury in the absence of vascular effects and that prosurvival signal activation is dependent on both S1P(1) and S1P(3) subtype receptors.


Assuntos
Lipoproteínas HDL/farmacologia , Lisofosfolipídeos/fisiologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Esfingosina/análogos & derivados , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , MAP Quinase Quinase 1/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Miócitos Cardíacos/patologia , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/fisiologia , Esfingosina/fisiologia
11.
J Cardiovasc Pharmacol ; 56(6): 659-68, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20881608

RESUMO

There is an increase in reactive oxygen and nitrogen species in cardiomyocytes during myocardial ischemia/reperfusion injury. This leads to oxidative DNA damage and activation of nuclear repair enzymes such as poly(ADP-ribose) polymerase-1 (PARP-1). PARP-1 activation promotes DNA repair under normal conditions. However, excessive activation of PARP-1 leads to cell death. We report that PARP-1 enzymatic activity is directly inhibited by minocycline, and we propose that one mechanism of minocycline cardioprotection is the result of PARP-1 inhibition. Using cultured adult rat cardiac myocytes, we evaluated the mechanism of minocycline protection in which PARP-1 activation was induced by simulated ischemia/reperfusion injury using oxygen­glucose deprivation.We found an increase in reactive oxygen species production, PARP-1 activation, and PARP-1-mediated cell death after simulated ischemia/reperfusion. Cell death was significantly reduced by the PARP inhibitors 3, 4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone (10 µM) and PJ-34 (500 nM) or by minocycline (500 nM). Cellular NAD(+) depletion and poly(ADP-ribose) formation, which are biochemical markers of PARP-1 activation, were also blocked by minocycline. Finally, simulated ischemia/reperfusion led to induction of the mitochondrial permeability transition, which was prevented by minocycline. Therefore, we propose that the protective effect of minocycline on cardiac myocyte survival is the result of inhibition of PARP-1 activity.


Assuntos
Cardiotônicos/farmacologia , Minociclina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases , Traumatismo por Reperfusão/prevenção & controle , Animais , Cardiotônicos/uso terapêutico , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Masculino , Minociclina/uso terapêutico , Miócitos Cardíacos/enzimologia , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Ratos , Traumatismo por Reperfusão/enzimologia
12.
J Cardiovasc Pharmacol ; 55(3): 219-26, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20375713

RESUMO

The DNA-damaging agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) causes cardiomyocyte death as a result of energy loss from excessive activation of poly-(ADP) ribose polymerase-1 (PARP-1) resulting in depletion of its substrates nicotinamide adenine dinucleotide (NAD) and ATP. Previously we showed that the chemotherapeutic agent vincristine (VCR) is cardioprotective. Here we tested the hypothesis that VCR inhibits MNNG-induced PARP activation. Adult mouse cardiomyocytes were incubated with 100 micromol/L MNNG with or without concurrent VCR (20 micromol/L) for 2 to 4 hours. Cardiomyocyte survival was measured using the trypan blue exclusion assay. Western blots were used to measure signaling responses. MNNG-induced cardiomyocyte damage was time- and concentration-dependent. MNNG activated PARP-1 and depleted NAD and ATP. VCR completely protected cardiomyocytes from MNNG-induced cell damage and maintained intracellular levels of NAD and ATP. VCR increased phosphorylation of the prosurvival signals Akt, GSK-3beta, Erk1/2, and p70S6 kinase. VCR delayed PARP activation as evidenced by Western blot and by immunofluorescence staining of poly (ADP)-ribose, but without directly inhibiting PARP-1 itself. Known PARP-1 inhibitors also protected cardiomyocytes from MNNG-induced death. Repletion of ATP, NAD, pyruvate, and glutamine had effects similar to PARP-1 inhibitors. We conclude that VCR protects cardiomyocytes from MNNG toxicity by regulating PARP-1 activation, intracellular energy metabolism, and prosurvival signaling.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/efeitos dos fármacos , Vincristina/farmacologia , Animais , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Masculino , Metilnitronitrosoguanidina/administração & dosagem , Metilnitronitrosoguanidina/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Fosforilação/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
13.
Cardiology ; 115(2): 155-62, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20016174

RESUMO

Established doxorubicin cardiomyopathy is a lethal disease. When congestive heart failure develops, mortality is approximately 50%. Extensive research has been done to understand the mechanism and pathophysiology of doxorubicin cardiomyopathy, and considerable knowledge and experience has been gained. Unfortunately, no effective treatment for established doxorubicin cardiomyopathy is presently available. Extensive research has been done and is being done to discover preventive treatments. However an effective and clinically applicable preventive treatment is yet to be discovered.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cardiomiopatias/induzido quimicamente , Doxorrubicina/efeitos adversos , Cardiomiopatias/diagnóstico , Cardiomiopatias/patologia , Cardiomiopatias/terapia , Humanos , Miocárdio/patologia
14.
Am J Physiol Heart Circ Physiol ; 297(4): H1429-35, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19648253

RESUMO

Exogenous sphingosine 1-phosphate (S1P) is an effective cardioprotectant against ischemic injury. We have investigated the hypothesis that S1P is also an important endogenous cardioprotectant released during both ischemic preconditioning (IPC) and ischemic postconditioning (IPOST). IPC of ex vivo rat hearts was instituted by two cycles of 3 min ischemia-5 min reperfusion prior to 40 min of index ischemia and then 40 min of reperfusion. IPC resulted in 70% recovery of left ventricular developed pressure (LVDP) upon reperfusion and a small infarct size (10%). VPC23019 (VPC), a specific antagonist of S1P(1 and 3) G protein-coupled receptors (GPCRs), when present during preconditioning blocked protection afforded by two cycles of IPC. VPC also blocked preconditioning of isolated rat cardiac myocytes subjected to hypoxia-reoxygenation injury. Increased release of S1P from myocytes in response to IPC was also demonstrated. These data indicate that S1P is released from myocytes in response to IPC and protects by binding to S1P GPCRs. In the ex vivo heart, if a third cycle of IPC was added to increase release of endogenous mediators, then the need for any individual mediator (e.g., S1P) was diminished and VPC had little effect. The adenosine antagonist 8-(p-sulfophenyl)-theophylline (8-SPT) likewise inhibited protection by two cycles but not three cycles of IPC, but VPC plus 8-SPT inhibited protection by three cycles of IPC. Similar to IPC, IPOST induced by four postindex ischemia cycles of 15 s reperfusion-15 s ischemia resulted in 66% recovery of LVDP and a 7% infarct size. When VPC was present during postconditioning and reperfusion, LVDP only recovered by 26% and the infarct size increased to 27%. Adding an additional cycle of IPOST reduced the inhibitory effect of VPC and 8-SPT individually, but not their combined effect. These studies reveal that S1P is an important mediator of both IPC and IPOST that is released along with adenosine during each cycle of IPC or IPOST.


Assuntos
Precondicionamento Isquêmico Miocárdico , Lisofosfolipídeos/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Esfingosina/análogos & derivados , Função Ventricular Esquerda , Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Técnicas In Vitro , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Perfusão , Antagonistas de Receptores Purinérgicos P1 , Ratos , Ratos Sprague-Dawley , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/metabolismo , Receptores Purinérgicos P1/metabolismo , Recuperação de Função Fisiológica , Transdução de Sinais , Esfingosina/metabolismo , Teofilina/análogos & derivados , Teofilina/farmacologia , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos , Pressão Ventricular
15.
J Cardiovasc Pharmacol ; 53(3): 189-97, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19247197

RESUMO

Activation of sphingosine kinase/sphingosine 1-phosphate-mediated signaling has emerged as a critical cardioprotective pathway in response to acute ischemia/reperfusion injury. Application of exogenous sphingosine 1-phosphate (S1P) in cultured cardiac myocytes subjected to hypoxia or treatment of isolated hearts either before ischemia or at the onset of reperfusion (pharmacologic preconditioning or postconditioning) exerts prosurvival effects. Synthetic congeners of S1P mimic these responses. Gene-targeted mice null for the sphingosine kinase 1 isoform whose hearts are subjected to ischemia/reperfusion injury exhibit increased infarct size and respond poorly either to ischemic preconditioning or to ischemic postconditioning. Measurements of cardiac sphingosine kinase activity and S1P parallel these observations. High-density lipoprotein is a major carrier of S1P, and studies of hearts in which selected S1P receptors have been deleted implicate the S1P cargo of high-density lipoprotein in cardioprotection. These observations have considerable relevance for future therapeutic approaches to acute and chronic myocardial injury.


Assuntos
Cardiotônicos/uso terapêutico , Lisofosfolipídeos/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/análogos & derivados , Animais , Cardiotônicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Humanos , Lisofosfolipídeos/fisiologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Receptores de Lisoesfingolipídeo/agonistas , Transdução de Sinais/efeitos dos fármacos , Esfingosina/metabolismo , Esfingosina/fisiologia
17.
J Cardiovasc Pharmacol ; 53(6): 486-94, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19433984

RESUMO

We examined the ability of sphingosine-1-phosphate (S1P) to desensitize extracellular signal-related kinase (ERK), a mitogen-activated protein kinase linked to antiapoptotic responses in the heart. In isolated adult mouse cardiomyocytes, S1P (10 nM-5 microM) induced ERK phosphorylation in a time- and dose-dependent manner. S1P stimulation of ERK was completely inhibited by an S1P1/3 subtype receptor antagonist (VPC23019), by a Gi protein inhibitor (pertussis toxin) and by a mitogen-activated protein kinase/ERK kinase inhibitor (PD98059). A selective S1P3 receptor antagonist (CAY10444) had no effect on S1P-induced ERK activation. The selective S1P1 agonist SEW2871 also induced ERK phosphorylation. Activation of ERK by restimulation with 100 nM S1P was suppressed after 1 hour of preincubation with 100 nM S1P but recovered fully the next day, suggesting receptor recycling. Similar results were obtained in protein kinase C epsilon-null cardiomyocytes. Treatment with the nonselective S1P receptor agonist FTY720 for 1 hour also reduced phospho-ERK expression in response to subsequent S1P stimulation. In contrast to S1P, some desensitization to FTY720 persisted after overnight exposure. Cell death induced by hypoxia/reoxygenation was reduced by pretreatment with exogenous S1P. This enhanced survival was abrogated by pretreatment with PD98059, VPC23019, or pertussis toxin. Thus, exogenous S1P induces rapid and reversible S1P1-mediated ERK phosphorylation. S1P-induced adult mouse cardiomyocyte survival requires ERK activation mediated via an S1P1-Gi pathway.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Lisoesfingolipídeo/fisiologia , Animais , Morte Celular/efeitos dos fármacos , Hipóxia Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática , Técnicas In Vitro , Lisofosfolipídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação , Proteína Quinase C/genética , Receptores de Lisoesfingolipídeo/agonistas , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Tiazolidinas/farmacologia
18.
Cardiovasc Res ; 79(1): 134-40, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18334546

RESUMO

AIMS: Sphingosine-1-phosphate (S1P) plays a vital role in cytoskeletal rearrangement, development, and apoptosis. Sphingosine kinase-1 (SphK1), the key enzyme catalyzing the formation of S1P, mediates ischaemic preconditioning. Ischaemic postconditioning (POST) has been shown to protect hearts against ischaemia/reperfusion injury (IR). To date, no studies have examined the role of SphK1 in POST. METHODS AND RESULTS: Wild-type (WT) and SphK1 null (KO) mouse hearts were subjected to IR (45 min of global ischaemia and 45 min of reperfusion) in a Langendorff apparatus. Left ventricular developed pressure (LVDP), maximum velocity of increase or decrease of LV pressure (+/-dP/dtmax), and LV end-diastolic pressure (LVEDP) were recorded. Infarction size was measured by 1% triphenyltetrazolium chloride staining. POST, consisting of 5 s of ischaemia and 5 s of reperfusion for three cycles after the index ischaemia, protected hearts against IR: recovery of LVDP and +/-dP/dtmax were elevated; LVEDP was decreased; infarction size (% of risk area) was reduced from 40 +/- 2% in the control group to 29 +/- 2% of the risk area in the POST group (P < 0.05, n = 4 per group). Phosphorylation of Akt and extracellular signal-regulated kinases detected by Western blotting was increased at 10 min of reperfusion. The protection induced by POST was abolished in KO hearts. Infarction size in KO hearts (57 +/- 5%) was not different from the KO control group (53 +/- 5% of risk area, n = 4, P = NS). CONCLUSIONS: A short period of ischaemic POST protected WT mouse hearts against IR. The cardiac protection induced by POST was abrogated in SphK1-KO mouse hearts. Thus, SphK1 is critical for successful ischaemic POST.


Assuntos
Precondicionamento Isquêmico Miocárdico , Miocárdio/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/prevenção & controle , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Isoenzimas , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Mutação/genética , Infarto do Miocárdio/patologia , Miocárdio/patologia , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/patologia
19.
Circulation ; 116(9): 1024-31, 2007 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-17698731

RESUMO

BACKGROUND: Epinephrine (EPI) is an important neurotransmitter and hormone. Its role in regulating cardiovascular function at rest and with stress is unclear, however. METHODS AND RESULTS: An epinephrine-deficient mouse model was generated in which the epinephrine-synthesizing enzyme phenylethanolamine N-methyltransferase was knocked out (KO). Blood pressure and heart rate were monitored by telemetry at rest and during graded treadmill exercise. Cardiac structure and function were evaluated by echocardiography in mice under 1 of 2 conditions: unstressed and lightly anesthetized or restrained and awake. In KO mice, resting cardiovascular function, including blood pressure, heart rate, and cardiac output, was the same as that in wild-type mice, and the basal norepinephrine plasma level was normal. However, inhibition of sympathetic innervation with the ganglion blocker hexamethonium caused a 54% smaller decrease in blood pressure in KO mice, and treadmill exercise caused an 11% higher increase in blood pressure, both suggesting impaired vasodilation in KO mice. Interestingly, phenylethanolamine N-methyltransferase KO did not change the heart rate response to ganglionic blockade and exercise. By echocardiography, KO mice had an increased ratio of left ventricular posterior wall thickness to internal dimensions but did not have cardiac hypertrophy, suggesting concentric remodeling in the KO heart. Finally, in restrained, awake KO mice, heart rate and ejection fraction remained normal, but cardiac output was significantly reduced because of diminished end-diastolic volume. CONCLUSION: Our data suggest that epinephrine is required for normal blood pressure and cardiac filling responses to stress but is not required for tachycardia during stress or normal cardiovascular function at rest.


Assuntos
Pressão Sanguínea/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Epinefrina/uso terapêutico , Frequência Cardíaca/fisiologia , Feniletanolamina N-Metiltransferase/deficiência , Estresse Fisiológico , Animais , Mapeamento Cromossômico , Clonagem Molecular , Teste de Esforço , Biblioteca Genômica , Genótipo , Testes de Função Cardíaca , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase , Taquicardia
20.
Biochem Biophys Res Commun ; 375(3): 425-9, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18706887

RESUMO

Both sphingosine and sphingosine-1-phosphate (S1P) were able to protect the ex vivo rat heart from ischemia reperfusion injury when added to the perfusion medium at the time of reperfusion after a 40min ischemia (postconditioning). Inhibitor studies revealed distinct mechanisms of protection, with S1P employing a G-protein coupled receptor pathway and sphingosine a cyclic nucleotide dependent protein kinase pathway. However, both restored ischemia-induced depletion of phospho-AKT. Extending the ischemia to 75min reduced protection by both S1P and sphingosine, but protection could be enhanced by employing them in combination. Extending the time of ischemia further to 90min almost eliminated cardioprotection by S1P or sphingosine; and their combination gave only modest protection. However, when S1P plus sphingosine was combined with a novel ramped ischemic postconditioning regimen, left ventricle developed pressure recovered by 66% and there was only a 6% infarct size. The data indicate that detrimental changes are accumulating during protracted ischemia but for up to 90min this damage is not irreversible and hearts can still recover with proper treatment.


Assuntos
Cardiotônicos/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Lisofosfolipídeos/farmacologia , Traumatismo por Reperfusão/fisiopatologia , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Animais , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Ventrículos do Coração/metabolismo , Técnicas In Vitro , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA