Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 16(11): 2774-2785, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32104867

RESUMO

Anisotropy at the level of the inter-particle interaction provides the particles with specific instructions for the self-assembly of target structures. The ability to synthesize non-spherical colloids, together with the possibility of controlling the particle bonding pattern via suitably placed interaction sites, is nowadays enlarging the playing field for materials design. We consider a model of anisotropic colloidal platelets with regular rhombic shape and two attractive sites placed along adjacent edges and we run Monte Carlo simulations in two-dimensions to investigate the two-stage assembly of these units into clusters with well-defined symmetries and, subsequently, into extended lattices. Our focus is on how the site positioning and site-site attraction strength can be tuned to obtain micellar aggregates that are robust enough to successively undergo to a second-stage assembly from sparse clusters into a stable hexagonal lattice.

2.
Nano Lett ; 19(11): 7806-7815, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31580675

RESUMO

In the realm of functional materials, the production of two-dimensional structures with tunable porosity is of paramount relevance for many practical applications: surfaces with regular arrays of pores can be used for selective adsorption or immobilization of guest units that are complementary in shape and/or size to the pores, thus achieving, for instance, selective filtering or well-defined responses to external stimuli. The principles that govern the formation of such structures are valid at both the molecular and the colloidal scale. Here we provide simple design directions to combine the anisotropic shape of the building units-either molecules or colloids-and selective directional bonding. Using extensive computer simulations, we show that regular rhombic platelets decorated with attractive and repulsive interaction sites form specific tilings, going smoothly from close-packed arrangements to open lattices. The rationale behind the rich tiling scenario observed can be described in terms of steric incompatibilities, unsatisfied bonding geometries, and interplays between local and long-range order.

3.
Int J Mol Sci ; 21(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207624

RESUMO

Non-spherical colloids provided with well-defined bonding sites-often referred to as patches-are increasingly attracting the attention of materials scientists due to their ability to spontaneously assemble into tunable surface structures. The emergence of two-dimensional patterns with well-defined architectures is often controlled by the properties of the self-assembling building blocks, which can be either colloidal particles at the nano- and micro-scale or even molecules and macromolecules. In particular, the interplay between the particle shape and the patch topology gives rise to a plethora of tilings, from close-packed to porous monolayers with pores of tunable shapes and sizes. The control over the resulting surface structures is provided by the directionality of the bonding mechanism, which mostly relies on the selective nature of the patches. In the present contribution, we investigate the effect of the patch size on the assembly of a class of anisotropic patchy colloids-namely, rhombic platelets with four identical patches placed in different arrangements along the particle edges. Larger patches are expected to enhance the bond flexibility, while simultaneously reducing the bond selectivity as the single bond per patch condition-which would guarantee a straightforward mapping between local bonding arrangements and long-range pattern formation-is not always enforced. We find that the non-trivial interplay between the patch size and the patch position can either promote a parallel particle arrangement with respect to a non-parallel bonding scenario or give rise to a variety a bonded patterns, which destroy the order of the tilings. We rationalize the occurrence of these two different regimes in terms of single versus multiple bonds between pairs of particles and/or patches.


Assuntos
Coloides/química , Modelos Químicos , Anisotropia , Substâncias Macromoleculares/química
4.
Nanoscale Adv ; 6(2): 443-457, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38235098

RESUMO

Anisotropic functionalized platelets are able to model the assembly behaviour of molecular systems in two dimensions thanks to the unique combination of steric and bonding constraints. The assembly scenarios can vary from open to close-packed crystals, finite clusters and chains, according to the features of the imposed constraints. In this work, we focus on the assembly of equilibrium networks. These networks can be seen as disordered, porous monolayers and can be of interest for instance in nano-filtration and optical applications. We investigate the formation and properties of two dimensional networks from shape anisotropic colloids functionalized with four patches. We characterize the connectivity properties, the typical local bonding motives, as well as the geometric features of the emerging networks for a large variety of different systems. Our results show that networks of shape anisotropic colloids assemble into highly versatile network topologies, that may be utilized for applications at the nanoscale.

5.
J Phys Condens Matter ; 32(20): 204001, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31984938

RESUMO

Patchy colloidal platelets with non-spherical shapes have been realized with different materials at length scales ranging from nanometers to microns. While the assembly of these hard shapes tends to maximize edge-to-edge contacts, as soon as a directional attraction is added-by means of, e.g. specific ligands along the particle edges-a competition between shape and bonding anisotropy sets in, giving rise to a complex assembly scenario. Here we focus on a two-dimensional system of patchy rhombi, i.e. colloidal platelets with a regular rhombic shape decorated with bonding sites along their perimeter. Specifically, we consider rhombi with two patches, placed on either opposite or adjacent edges. While for the first particle class only chains can form, for the latter we observe the emergence of either chains or loops, depending on the system parameters. According to the patch positioning-classified in terms of different configurations, topologies and distances from the edge center-we are able to characterize the emerging chain-like assemblies in terms of length, packing abilities, flexibility properties and nematic ordering.

6.
Adv Mater ; 30(32): e1802078, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29944182

RESUMO

When nanocrystals self assemble into ordered superstructures they form functional solids that may inherit the electronical properties of the single nanocrystals. To what extent these properties are enhanced depends on the positional and orientational order of the nanocrystals within the superstructure. Here, the formation of micrometer-sized free-standing supercrystals of faceted 20 nm Bi nanocrystals is investigated. The self-assembly process, induced by nonsolvent into solvent diffusion, is probed in situ by synchrotron X-ray scattering. The diffusion-gradient is identified as the critical parameter for controlling the supercrystal-structure as well as the alignment of the supercrystals with respect to the substrate. Monte Carlo simulations confirm the positional order of the nanocrystals within these superstructures and reveal a unique orientation phase: the nanocrystal shape, determined by the atomic Bi crystal structure, induces a total of 6 global orientations based on facet-to-facet alignment. This parallel alignment of facets is a prerequisite for optimized electronic and optical properties within designed nanocrystal solids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA