Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Allergy ; 79(4): 843-860, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38055191

RESUMO

Transcription therapy is an emerging approach that centers on identifying the factors associated with the malfunctioning gene transcription machinery that causes diseases and controlling them with designer agents. Until now, the primary research focus in therapeutic gene modulation has been on small-molecule drugs that target epigenetic enzymes and critical signaling pathways. However, nucleic acid-based small molecules have gained popularity in recent years for their amenability to be pre-designed and realize operative control over the dynamic transcription machinery that governs how the immune system responds to diseases. Pyrrole-imidazole polyamides (PIPs) are well-established DNA-based small-molecule gene regulators that overcome the limitations of their conventional counterparts owing to their sequence-targeted specificity, versatile regulatory efficiency, and biocompatibility. Here, we emphasize the rational design of PIPs, their functional mechanisms, and their potential as targeted transcription therapeutics for disease treatment by regulating the immune response. Furthermore, we also discuss the challenges and foresight of this approach in personalized immunotherapy in precision medicine.


Assuntos
Ácidos Nucleicos , Humanos , DNA , Imunidade
2.
J Fluoresc ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971607

RESUMO

Carnosine is beta-alanyl histidine, a dipeptide, endogenously produced in our body by the carnosine synthase enzyme. It is an antioxidant, thus protecting from the deleterious effect of advanced glycation end products (AGEs). Similarly, aminoguanidine (AG) also prevents AGEs formation by scavenging free radicals such as reactive oxygen species (ROS)/reactive carbonyl species (RCS). This study used experimental and computational techniques to perform a comparative analysis of carnosine and AG and their inhibiting properties against glycated human serum albumin (HSA). Fructose-mediated glycation of albumin produced fluorescent structures, such as pentosidine and malondialdehyde. These AGEs were significantly reduced by carnosine and AG. At 20 mM, carnosine and AG quenches pentosidine fluorescence by 66% and 83%, respectively. A similar inhibitory effect was observed for malondialdehyde. Protein hydrophobicity and tryptophan fluorescence were restored in the presence of carnosine and AG. Aminoguanidine decreased fibrillation in HSA, while carnosine did not significantly affect aggregation/fibrillation. In addition, molecular docking study observed binding scores of -5.90 kcal/mol and -2.59 kcal/mol by HSA-aminoguanidine and HSA-carnosine complex, respectively. Aminoguanidine forms one conventional hydrogen bond with ARG A:10 and a salt bridge with ASP A:13, ASP A:259, ASP A:255, and ASP A:256 from the amine group. Similarly, carnosine forms only hydrogen bonds with GLU A:501 and GLN A:508 from the amine and hydroxy group. The root mean square deviation (RMSD) calculated from simulation studies was 1 nm upto 70 ns for the HSA-aminoguanidine complex and the spectrum of HSA-carnosine was significantly deviated and not stabilized. The superior inhibitory activity of aminoguanidine could be due to additional salt bridge bonding with albumin. Conclusively, aminoguanidine can be the better treatment choice for diabetes-associated neurological diseases.

3.
Molecules ; 28(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37049692

RESUMO

A new series of ternary metal complexes, including Co(II), Ni(II), Cu(II), and Zn(II), were synthesized and characterized by elemental analysis and diverse spectroscopic methods. The complexes were synthesized from respective metal salts with Schiff's-base-containing amino acids, salicylaldehyde derivatives, and heterocyclic bases. The amino acids containing Schiff bases showed promising pharmacological properties upon complexation. Based on satisfactory elemental analyses and various spectroscopic techniques, these complexes revealed a distorted, square pyramidal geometry around metal ions. The molecular structures of the complexes were optimized by DFT calculations. Quantum calculations were performed with the density functional method for which the LACVP++ basis set was used to find the optimized molecular structure of the complexes. The metal complexes were subjected to an electrochemical investigation to determine the redox behavior and oxidation state of the metal ions. Furthermore, all complexes were utilized for catalytic assets of a multi-component Mannich reaction for the preparation of -amino carbonyl derivatives. The synthesized complexes were tested to determine their antibacterial activity against E. coli, K. pneumoniae, and S. aureus bacteria. To evaluate the cytotoxic effects of the Cu(II) complexes, lung cancer (A549), cervical cancer (HeLa), and breast cancer (MCF-7) cells compared to normal cells, cell lines such as human dermal fibroblasts (HDF) were used. Further, the docking study parameters were supported, for which it was observed that the metal complexes could be effective in anticancer applications.


Assuntos
Complexos de Coordenação , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Bases de Schiff/farmacologia , Bases de Schiff/química , Valina , Escherichia coli , Staphylococcus aureus , Metais/química , Antibacterianos/farmacologia , Antibacterianos/química , Ligantes , Cobre/química
4.
J Cell Biochem ; 123(7): 1148-1156, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35713153

RESUMO

A 22 kDa protein from Thermus thermophilus is characterised as a DNA binding transcription regulator and its function is established using the fluorescence spectroscopy technique. The steady-state fluorescence spectroscopy result shows significant binding of calf thymus DNA and protein molecule. To confirm, the DNA quenching effect in real-time, a time-resolved emission spectroscopy study was performed and the result shows good agreement with steady-state quenching analysis.


Assuntos
Temperatura Alta , Fatores de Transcrição , DNA/química , Espectrometria de Fluorescência
5.
Mol Pharm ; 16(2): 669-681, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30601011

RESUMO

In this present study on understanding the taxol (PTX) binding interaction mechanism in both the ß-tubulin and bovine serum albumin (BSA) molecule, various optical spectroscopy and computational techniques were used. The fluorescence steady-state emission spectroscopy result suggests that there is a static quenching mechanism of the PTX drug in both ß-tubulin and BSA, and further time-resolved emission spectroscopy studies confirm that the quenching mechanism exists. The excitation-emission matrix (EEM), Fourier transform infrared, and resonance light scattering spectra (FT-IR) confirm that there are structural changes in both the BSA and ß-tubulin molecule during the binding process of PTX. The molecular docking studies revealed the PTX binding information in BSA, ß-tubulin, and modeled ß-tubulin and the best binding pose to further subject the molecular dynamics simulation, and this study confirms the stability of PTX in the protein complex during the simulation. Density functional theory (DFT) calculations were performed between the free PTX drug and PTX drug (single point) in the protein molecule active site region to understand the internal stability.


Assuntos
Paclitaxel/química , Paclitaxel/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Animais , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
6.
J Chem Inf Model ; 59(1): 326-338, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30481010

RESUMO

The present study focuses on the determination of the biologically significant N-acetylneuraminic acid (NANA) drug binding interaction mechanism between bovine serum albumin (BSA) and human α-1 acid glycoprotein (HAG) using various optical spectroscopy and computational methods. The steady state fluorescence spectroscopy result suggests that the fluorescence intensity of BSA and HAG was quenched by NANA in a static mode of quenching. Further time-resolved emission spectroscopy measurements confirm that mode of quenching mechanism of NANA in the BSA and HAG system. The FT-IR, excitation-emission matrix and circular dichroism (CD) analysis confirms the presence of NANA in the HAG, BSA system, and fluorescence resonance energy transfer analysis shows that NANA transfers energy between the HAG and BSA system. The molecular docking result shows good binding affinity in both protein complexes, and further molecular dynamics simulations and charge distribution analysis were performed to gain more insight into the binding interaction mechanism of NANA in the HAG and BSA complex.


Assuntos
Simulação de Acoplamento Molecular , Ácido N-Acetilneuramínico/metabolismo , Orosomucoide/metabolismo , Soroalbumina Bovina/metabolismo , Animais , Bovinos , Teoria da Densidade Funcional , Humanos , Orosomucoide/química , Ligação Proteica , Conformação Proteica , Soroalbumina Bovina/química , Eletricidade Estática
7.
Bioorg Chem ; 92: 103193, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31445196

RESUMO

A ring transformation of 6-methyl-7H[1,2,4]triazolo [4,3-b][1,2,4] triazepine-8(9H)-ones (thiones) in the presence of acetic anhydride give rise to a new series of 17 condensed 1,2,4-triazole derivatives (1-17). Plausible mechanisms are proposed and show the formation of a beta fused ß-lactam moiety. The compounds were tested for their (i) inhibitory potential on digestive enzymes (α-amylase and α-glucosidase), and (ii) antioxidant activity using radical scavenging (DPPH and ABTS radicals) and ferric reducing power assays. The compounds showed interesting and promising antidiabetic activities compared to the reference drug Acarbose. Molecular docking study has been carried out to determine the binding mode interactions between these derivatives and the targeted enzymes. The results showed the strength of intermolecular hydrogen bonding in ligand-receptor complexes as an important descriptor in rationalizing the observed inhibition results. Moreover, molecular dynamics simulations are also performed for the best protein-ligand complex to understand the stability of small molecule in a protein environment. To shed light on the antioxidant activity of the synthesized compounds and the mechanism involved in DPPH free radical, DFT calculations were performed at the B3P86/6-311++G(d,p) level using the polarizable continuum model. The effect of aprotic solvent on bond dissociation enthalpies (BDEs) is investigated by calculating and comparing BDEs of 1 in methanol and dimethylsulfoxide as solvents using PCM. The obtained results show that the mechanism of action depends on the basic skeleton and the presence of substituted functional groups in these derivatives. BDEs are found to be slightly influenced by the aprotic solvent of less than 0.01 kcal/mol compared with those obtained in methanol.


Assuntos
Antioxidantes/síntese química , Hipoglicemiantes/síntese química , Triazóis/síntese química , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo , Antioxidantes/farmacologia , Teoria da Densidade Funcional , Dimetil Sulfóxido/química , Avaliação Pré-Clínica de Medicamentos , Radicais Livres/química , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Solventes/química , Relação Estrutura-Atividade , Termodinâmica , Triazóis/farmacologia
8.
Luminescence ; 33(4): 731-741, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29578306

RESUMO

In this study the interaction mechanism between newly synthesized 4-(3-acetyl-5-(acetylamino)-2-methyl-2, 3-dihydro-1,3,4-thiadiazole-2-yl) phenyl benzoate (thiadiazole derivative) anticancer active drug with calf thymus DNA was investigated by using various optical spectroscopy techniques along with computational technique. The absorption spectrum shows a clear shift in the lower wavelength region, which may be due to strong hypochromic effect in the ctDNA and the drug. The results of steady state fluorescence spectroscopy show that there is static quenching occurring while increasing the thiadiazole drug concentration in the ethidium bromide-ctDNA system. Also the binding constant (K), thermo dynamical parameters of enthalpy change (ΔH°), entropy change (ΔS°) Gibbs free energy change (ΔG°) were calculated at different temperature (293 K, 298 K) and the results are in good agreement with theoretically calculated MMGBSA binding analysis. Time resolved emission spectroscopy analysis clearly explains the thiadiazole derivative competitive intercalation in the ethidium bromide-ctDNA system. Further, molecular docking studies was carried out to understand the hydrogen bonding and hydrophobic interaction between ctDNA and thiadiazole derivative molecule. In addition the docking and molecular dynamics charge distribution analysis was done to understand the internal stability of thiadiazole derivative drug binding sites of ctDNA. The global reactivity of thiadiazole derivative such as electronegativity, electrophilicity and chemical hardness has been calculated.


Assuntos
Antineoplásicos/farmacologia , Benzoatos/farmacologia , DNA/química , Tiadiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzoatos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Teoria Quântica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Tiadiazóis/química , Células Tumorais Cultivadas
9.
J Biochem Mol Toxicol ; 29(8): 373-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25906763

RESUMO

A newly synthesized 1, 4-bis ((4-((4-heptylpiperazin-1-yl) methyl)-1H-1, 2, 3-triazol-1-yl) methyl) benzene from the family of piperazine derivative has good anticancer activity, antibacterial and low toxic nature; its binding characteristics are therefore of huge interest for understanding pharmacokinetic mechanism of the drug. The binding of piperazine derivative to bovine serum albumin (BSA) was investigated using fluorescence spectroscopy. The molecular distance r between the donor (BSA) and acceptor (piperazine derivative) was estimated according to Forster's theory of nonradiative energy transfer. The physicochemical properties of piperazine derivative, which induced structural changes in BSA, have been studied by circular dichroism and those chemical environmental changes were probed using Raman spectroscopic analysis. Further, the binding dynamics was expounded by synchronous fluorescence spectroscopy and molecular modeling studies explored the hydrophobic interaction and hydrogen bonding results, which stabilize the interaction.


Assuntos
Piperazinas/química , Soroalbumina Bovina/química , Triazóis/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Ligação Proteica , Análise Espectral
10.
Front Bioeng Biotechnol ; 12: 1397804, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938982

RESUMO

Metal-organic frameworks (MOFs) have emerged as promising nanocarriers for cancer treatment due to their unique properties. Featuring high porosity, extensive surface area, chemical stability, and good biocompatibility, MOFs are ideal for efficient drug delivery, targeted therapy, and controlled release. They can be designed to target specific cellular organelles to disrupt metabolic processes in cancer cells. Additionally, functionalization with enzymes mimics their catalytic activity, enhancing photodynamic therapy and overcoming apoptosis resistance in cancer cells. The controllable and regular structure of MOFs, along with their tumor microenvironment responsiveness, make them promising nanocarriers for anticancer drugs. These carriers can effectively deliver a wide range of drugs with improved bioavailability, controlled release rate, and targeted delivery efficiency compared to alternatives. In this article, we review both experimental and computational studies focusing on the interaction between MOFs and drug, explicating the release mechanisms and stability in physiological conditions. Notably, we explore the relationship between MOF structure and its ability to damage cancer cells, elucidating why MOFs are excellent candidates for bio-applicability. By understanding the problem and exploring potential solutions, this review provides insights into the future directions for harnessing the full potential of MOFs, ultimately leading to improved therapeutic outcomes in cancer treatment.

11.
J Biomol Struct Dyn ; 42(3): 1455-1468, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37114656

RESUMO

Viral infections cause significant health problems all over the world, and it is critical to develop treatments for these problems. Antivirals that target viral genome-encoded proteins frequently cause the virus to become more resistant to treatment. Because viruses rely on several cellular proteins and phosphorylation processes that are essential to their life cycle, drugs targeting host-based targets could be a viable treatment option. To reduce costs and improve efficiency, existing kinase inhibitors could be repurposed as antiviral medications; however, this method rarely works, and specific biophysical approaches are required in the field. Because of the widespread use of FDA-approved kinase inhibitors, it is now possible to better understand how host kinases contribute to viral infection. The purpose of this article is to investigate the tyrphostin AG879 (Tyrosine kinase inhibitor) binding information in Bovine Serum Albumin (BSA), human ErbB2 (HER2), C-RAF1 Kinase (c-RAF), SARS-CoV-2 main protease (COVID 19), and Angiotensin-converting enzyme 2 (ACE-2).Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Humanos , Tirfostinas , SARS-CoV-2 , Soroalbumina Bovina , Enzima de Conversão de Angiotensina 2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Inibidores de Proteases
12.
Int J Biol Macromol ; 279(Pt 4): 135458, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39251007

RESUMO

L-asparaginase is a remarkable antineoplastic enzyme used in medicine for the treatment of acute lymphoblastic leukemia (ALL) as well as in food industries. In this work, the L-asparaginase-II gene from Salmonella paratyphi was codon-optimized, cloned, and expressed in E. coli as a His-tag fusion protein. Then, using a two-step chromatographic procedure it was purified to homogeneity as confirmed by SDS-PAGE, which also showed its monomeric molecular weight to be 37 kDa. This recombinant L-asparaginase II from Salmonella paratyphi (recSalA) was optimally active at pH 7.0 and 40 °C temperature. It was highly specific for L-asparagine as a substrate, while its glutaminase activity was low. The specific activity was found to be 197 U/mg and the kinetics elements Km, Vmax, and kcat were determined to be 21 mM, 28 µM/min, and 39.6 S-1, respectively. Thermal stability was assessed using a spectrofluorometer and showed Tm value of 45 °C. The in-vitro effects of recombinant asparaginase on three different human cancerous cell lines (MCF7, A549 and Hep-2) by MTT assay showed remarkable anti-proliferative activity. Moreover, recSalA exhibited significant morphological changes in cancer cells and IC50 values ranged from 28 to 45.5 µg/ml for tested cell lines. To investigate the binding mechanism of SalA, both substrates L-asparagine and l-glutamine were docked with the protein and the binding energy was calculated to be -4.2 kcal mol-1 and - 4.4 kcal mol-1, respectively. In summary, recSalA has significant efficacy as an anticancer agent with potential implications in oncology while its in-vivo validation needs further investigation.


Assuntos
Asparaginase , Clonagem Molecular , Escherichia coli , Proteínas Recombinantes , Asparaginase/genética , Asparaginase/química , Asparaginase/farmacologia , Asparaginase/metabolismo , Asparaginase/isolamento & purificação , Humanos , Escherichia coli/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Expressão Gênica , Cinética , Estabilidade Enzimática , Salmonella paratyphi A/genética , Salmonella paratyphi A/efeitos dos fármacos , Temperatura , Proliferação de Células/efeitos dos fármacos
13.
J Biomol Struct Dyn ; : 1-19, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385483

RESUMO

Quinoxaline represents one of the most important classes of heterocyclic compounds, which have exhibited a wide range of biological activities and industrial importance in many different fields. In this regard, we have synthetized two new quinoxaline derivatives. Their structures were confirmed by single-crystal X-ray analysis. The compounds show potent activity against adenosine receptors A2AAR based on structural activity relationship studies. Further molecular docking, molecular dynamics, ADMET analysis, and DFT (density functional theory) calculations were performed to understand the titled compound's future drug candidacy. DFT computations confirmed the good stability of the synthesized compounds, as evidenced by the optimized molecular geometry, HOMO-LUMO energy gap, and intermolecular interactions. NBO analysis confirmed intermolecular interactions mediated by lone pair, bonding, and anti-bonding orbitals. All DFT findings were consistent with experimental results, indicating that the synthesized molecules are highly stable. These findings suggest that the synthesized compounds are promising candidates for further development as drugs for the treatment of A2AAR-related diseases.Communicated by Ramaswamy H. Sarma.

14.
J Biomol Struct Dyn ; : 1-20, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321917

RESUMO

Quinoxaline derivatives are an important class of heterocyclic compounds in which N replaces one or more carbon atoms of the naphthalene ring and exhibit a wide spectrum of biological activities and therapeutic applications. As a result, we were encouraged to explore a new synthetic approach to quinoxaline derivatives. In this work, we synthesized two new derivatives namely, ethyl 4-(2-ethoxy-2-oxoethyl)-3-oxo-3,4-dihydroquinoxaline-2-carboxylate (2) and 3-oxo-3,4-dihydroquinoxaline-2-carbohydrazide (3) respectively. Their structures were confirmed by single-crystal X-ray analysis. Hirshfeld surface (HS) analysis is performed to understand the nature and magnitude of intermolecular interactions in the crystal packing. Density functional theory using the wb97xd/def2-TZVP method was chosen to explore their reactivity, electronic stability and optical properties. Charge transfer (CT) and orbital energies were analyzed via natural population analysis (NPA), and frontier molecular orbital (FMO) theory. The calculated excellent static hyperpolarizability (ßo) indicates nonlinear optical (NLO) properties for 2 and 3. Both compounds show potent activity against c-Jun N-terminal kinases 1 (JNK 1) based on structural activity relationship studies, further subjected to molecular docking, molecular dynamics and ADMET analysis to understand their potential as drug candidates.Communicated by Ramaswamy H. Sarma.

15.
RSC Adv ; 14(4): 2835-2849, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38234869

RESUMO

Chalcone derivatives are an extremely valuable class of compounds, primarily due to the keto-ethylenic group, CO-CH[double bond, length as m-dash]CH-, they contain. Moreover, the presence of a reactive α,ß-unsaturated carbonyl group confers upon them a broad range of pharmacological properties. Recent developments in heterocyclic chemistry have led to the synthesis of chalcone derivatives, which have been biologically investigated for their activity against certain diseases. In this study, we investigated the binding of new chalcone derivatives with COX-2 (cyclooxygenase-2) and HSA (Human Serum Albumin) using spectroscopic and molecular modeling studies. COX-2 is commonly found in cancer and plays a role in the production of prostaglandin E (2), which can help tumors grow by binding to receptors. HSA is the most abundant protein in blood plasma, and it transports various compounds, including hormones and fatty acids. The conformation of chalcone derivatives in the HSA complex system was established through fluorescence steady and excited state spectroscopy techniques and FTIR analyses. To gain a more comprehensive understanding, molecular docking, and dynamics were conducted on the target protein (COX-2) and transport protein (HSA). In addition, we conducted density-functional theory (DFT) and single-point DFT to understand intermolecular interaction in protein active sites.

16.
J Biomol Struct Dyn ; 42(10): 5053-5071, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38764131

RESUMO

The synthesis of two new hexahydroisoquinoline-4-carbonitrile derivatives (3a and 3b) is reported along with spectroscopic data and their crystal structures. In compound 3a, the intramolecular O-H···O hydrogen bond constraints the acetyl and hydroxyl groups to be syn. In the crystal, inversion dimers are generated by C-H···O hydrogen bonds and are connected into layers parallel to (10-1) by additional C-H···O hydrogen bonds. The layers are stacked with Cl···S contacts 0.17 Å less than the sum of the respective van der Waals radii. The conformation of the compound 3b is partially determined by the intramolecular O-H···O hydrogen bond. A puckering analysis of the tetrahydroisoquinoline unit was performed. In the crystal, O-H···O and C-H···O hydrogen bonds together with C-H···π(ring) interactions form layers parallel to (01-1) which pack with normal van der Waals interactions. To understand the binding efficiency and stability of the title molecules, molecular docking, and 100 ns dynamic simulation analyses were performed with CDK5A1. To rationalize their structure-activity relationship(s), a DFT study at the B3LYP/6-311++G** theoretical level was also done. The 3D Hirshfled surfaces were also taken to investigate the crystal packings of both compounds. In addition, their ADMET properties were explored.Communicated by Ramaswamy H. Sarma.


Assuntos
Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Cristalografia por Raios X , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/farmacologia , Conformação Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Modelos Moleculares , Nitrilas/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Humanos
17.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 5): o780, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23723924

RESUMO

In the title compound, C16H16N2O, the phenyl and 2-amino-phenyl rings are almost perpendicular to one another, with a dihedral angle of 82.77 (8)°. There is an intra-molecular N-H⋯O hydrogen bond in the mol-ecule. In the crystal, mol-ecules are linked via N-H⋯O hydrogen bonds forming chains along [001]. There are also C-H⋯π inter-actions present, linking the chains to form a three-dimensional structure.

18.
RSC Adv ; 13(9): 6051-6064, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36814879

RESUMO

In recent years, the field of nanomaterials has exponentially expanded with versatile biological applications. However, one of the roadblocks to their clinical translation is the critical knowledge gap about how the nanomaterials interact with the biological microenvironment (nano-bio interactions). When nanomaterials are used as drug carriers or contrast agents for biological imaging, the nano-bio interaction-mediated protein conformational changes and misfolding could lead to disease-related molecular alterations and/or cell death. Here, we studied the conformation changes of human immunoglobulin G (IgG) upon interaction with silicon quantum dots functionalized with 1-decene, Pluronic-F127 (SiQD-De/F127 micelles) using UV-visible, fluorescence steady state and excited state kinetics, circular dichroism, and molecular modeling. Decene monolayer terminated SiQDs are accumulated inside the Pluronic F127 shells to form SiQD-De/F127 micelles and were shown to bind strongly with IgG. In addition, biological evaluation studies in cell lines (HeLa, Fibroblast) and medaka fish (eggs and larvae) showed enhanced uptake and minimal cytotoxicity. Our results substantiate that engineered QDs obviating the protein conformational changes could have adept bioefficacy.

19.
J Biomol Struct Dyn ; 41(23): 14599-14619, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36914255

RESUMO

Heterocyclic derivatives have more interesting biological properties which hold a remarkable place in pharmaceutical industries due to their unique physiochemical properties and ease of adaption in various biological environments. Of many, the above-said derivatives have been recently examined for their promising action against a few malignancies. Specifically, anti-cancer research has benefited from these derivatives' natural flexibility and dynamic core scaffold. In any case, concerning some other promising anti-cancer drugs, heterocyclic derivative doesn't come without deficiencies. To be a successful drug candidate it should poses Absorption, Distribution, Metabolism and Eliminations (ADME) parameter, and must also have good binding interaction towards carrier protein as well as DNA and less in toxic nature, economically feasible. In this review, we described the overview of biologically important heterocyclic derivatives and their main application in medicine. Further, we focus types of biophysical techniques to understand the binding interaction mechanism.Communicated by Ramaswamy H. Sarma.


Assuntos
Compostos Heterocíclicos , Biofísica , Compostos Heterocíclicos/farmacologia , Simulação de Acoplamento Molecular
20.
Curr Res Struct Biol ; 6: 100110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106460

RESUMO

Atherosclerosis is a chronic inflammatory disease characterized by plaque build-up in the arteries, leading to the obstruction of blood flow. Macrophages are the primary immune cells found in the atherosclerotic lesions and are directly involved in atherosclerosis progression. Macrophages are derived from extravasating blood monocytes. The monocytic CD40 receptor is important for monocyte recruitment on the endothelium expressing the CD40 ligand (CD40L). Thus, targeting monocyte/macrophage interaction with the endothelium by inhibiting CD40-CD40L interaction may be a promising strategy for attenuating atherosclerosis. Monoclonal antibodies have been used against this target but shows various complications. We used an array of computer-aided drug discovery tools and molecular docking approaches to design a therapeutic inhibitory peptide that could efficiently bind to the critical residues (82Y, 84D, and 86N) on the CD40 receptor essential for the receptor's binding to CD40L. The initial screen identified a parent peptide with a high binding affinity to CD40, but the peptide exhibited a positive hepatotoxicity score. We then designed several novel peptidomimetic derivatives with higher binding affinities to CD40, good physicochemical properties, and negative hepatotoxicity as compared to the parent peptide. Furthermore, we conducted molecular dynamics simulations for both the apo and complexed forms of the receptor with ligand, and screened peptides to evaluate their stability. The designed peptidomimetic derivatives are promising therapeutics targeting the CD40-CD40L interaction and may potentially be used to attenuate atherosclerosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA