Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36555799

RESUMO

The human body's natural protective barrier, the skin, is exposed daily to minor or major mechanical trauma, which can compromise its integrity. Therefore, the search for new dressing materials that can offer new functionalisation is fully justified. In this work, the development of two new types of dressings based on poly(3-hydroxyoctanoate) (P(3HO)) is presented. One of the groups was supplemented with conjugates of an anti-inflammatory substance (diclofenac) that was covalently linked to oligomers of hydroxycarboxylic acids (Oli-dicP(3HO)). The novel dressings were prepared using the solvent casting/particulate leaching technique. To our knowledge, this is the first paper in which P(3HO)-based dressings were used in mice wound treatment. The results of our research confirm that dressings based on P(3HO) are safe, do not induce an inflammatory response, reduce the expression of pro-inflammatory cytokines, provide adequate wound moisture, support angiogenesis, and, thanks to their hydrophobic characteristics, provide an ideal protective barrier. Newly designed dressings containing Oli-dicP(3HO) can promote tissue regeneration by partially reducing the inflammation at the injury site. To conclude, the presented materials might be potential candidates as excellent dressings for wound treatment.


Assuntos
Implantes Absorvíveis , Cicatrização , Camundongos , Humanos , Animais , Bandagens , Caprilatos
2.
Ophthalmic Res ; 64(3): 345-355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33454713

RESUMO

Retinal ganglion cells (RGCs) play a crucial role in the visual pathway. As their axons form the optic nerve, apoptosis of these cells causes neurodegenerative vision loss. RGC death could be triggered by increased intraocular pressure, advanced glycation end products, or mitochondrial dysfunction. In this review, we summarize the role of some neuroprotective factors in RGC injury: ciliary neurotrophic factor (CNTF), nerve growth factor (NGF), brain-derived neurotrophic factor, vascular endothelial growth factor, pigment epithelium-derived factor, glial cell line-derived neurotrophic factor, and Norrin. Each, in their own unique way, prevents RGC damage caused by glaucoma, ocular hypertension, ischemic neuropathy, and even oxygen-induced retinopathy. These factors are produced mainly by neurons, leukocytes, glial cells, and epithelial cells. Neuroprotective factors act via various signaling pathways, including JAK/STAT, MAPK, TrkA, and TrkB, which promotes RGC survival. Many attempts have been made to develop therapeutic strategies using these factors. There are ongoing clinical trials with CNTF and NGF, but they have not yet been accepted for clinical use.


Assuntos
Glaucoma , Células Ganglionares da Retina , Sobrevivência Celular , Fator Neurotrófico Ciliar , Humanos , Fator de Crescimento Neural , Retina , Fator A de Crescimento do Endotélio Vascular
3.
Cerebellum ; 18(2): 255-265, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30109601

RESUMO

This review considers a link between prematurity and autism by comparing symptoms, physiological abnormalities, and behavior. It focuses on the bidirectional signaling between the microbiota and the brain, here defined as the microbiota-gut-vagus-heart-brain (MGVHB) axis and its systemic disruption accompanying altered neurodevelopment. Data derived from clinical and animal studies document increased prevalence of gastrointestinal, cardiovascular, cognitive, and behavioral symptoms in both premature and autistic children and suggest an incomplete maturation of the gut-blood barrier resulting in a "leaky gut," dysbiosis, abnormalities in vagal regulation of the heart, altered development of specific brain regions, and behavior. Furthermore, this review posits the hypothesis that common genetic variants link the abnormalities in the MGVHB axis in premature and autistic pathologies. This hypothesis is based on the recently identified common genetic variants: early B cell factor 1 (EBF1), selenocysteine tRNA-specific eukaryotic elongation factor (EEFSEC), and angiotensin II receptor type 2 (AGTR2), in the maternal and infant DNA samples, associated with risk of preterm birth and independently implicated in a risk of autism. We predict that the AGTR2 variants involved in the brain maturation and oxytocin-arginine-vasopressin (OXT-AVP) pathways, related to social behavior, will contribute to our understanding of the link between prematurity and autism paving a way to new therapies.


Assuntos
Transtorno Autístico/fisiopatologia , Encéfalo/fisiopatologia , Microbioma Gastrointestinal , Recém-Nascido Prematuro , Animais , Transtorno Autístico/genética , Encéfalo/crescimento & desenvolvimento , Humanos , Recém-Nascido Prematuro/crescimento & desenvolvimento , Recém-Nascido Prematuro/fisiologia
4.
Med Sci Monit ; 21: 1587-97, 2015 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-26026273

RESUMO

BACKGROUND: Multiple sclerosis is a human autoimmunological disease that causes neurodegeneration. One of the potential ways to stop its development is induction of oral tolerance, whose effect lies in decreasing immune response to the fed antigen. It was shown in animal models that administration of specific epitopes of the three main myelin proteins - myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), and proteolipid protein (PLP) - results in induction of oral tolerance and suppression of disease symptoms. Use of bacterial cells to produce and deliver antigens to gut mucosa seems to be an attractive method for oral tolerance induction in treatment of diseases with autoimmune background. MATERIAL AND METHODS: Synthetic genes of MOG35-55, MBP85-97, and PLP139-151 myelin epitopes were generated and cloned in Lactococcus lactis under a CcpA-regulated promoter. The tolerogenic effect of bacterial preparations was tested on experimental autoimmune encephalomyelitis, which is the animal model of MS. EAE was induced in rats by intradermal injection of guinea pig spinal cord homogenate into hind paws. RESULTS: Rats were administered preparations containing whole-cell lysates of L. lactis producing myelin antigens using different feeding schemes. Our study demonstrates that 20-fold, but not 4-fold, intragastric administration of autoantigen-expressing L. lactis cells under specific conditions reduces the clinical symptoms of EAE in rats. CONCLUSIONS: The present study evaluated the use of myelin antigens produced in L. lactis in inhibiting the onset of experimental autoimmune encephalomyelitis in rats. Obtained results indicate that application of such recombinant cells can be an attractive method of oral tolerance induction.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Tolerância Imunológica/imunologia , Lactococcus lactis/genética , Proteína Básica da Mielina/farmacologia , Proteína Proteolipídica de Mielina/farmacologia , Glicoproteína Mielina-Oligodendrócito/farmacologia , Fragmentos de Peptídeos/farmacologia , Administração Oral , Animais , Sequência de Bases , Clonagem Molecular , Tolerância Imunológica/efeitos dos fármacos , Lactococcus lactis/metabolismo , Dados de Sequência Molecular , Proteína Básica da Mielina/administração & dosagem , Proteína Básica da Mielina/genética , Proteína Proteolipídica de Mielina/administração & dosagem , Proteína Proteolipídica de Mielina/genética , Glicoproteína Mielina-Oligodendrócito/administração & dosagem , Glicoproteína Mielina-Oligodendrócito/genética , Oligonucleotídeos/genética , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Ratos , Análise de Sequência de DNA
5.
Pharmacol Rep ; 76(5): 926-943, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39177889

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune disease characterized by pathological processes of demyelination, subsequent axonal loss, and neurodegeneration within the central nervous system. Despite the availability of numerous disease-modifying therapies that effectively manage this condition, there is an emerging need to identify novel therapeutic targets, particularly for progressive forms of MS. Based on contemporary insights into disease pathophysiology, ongoing efforts are directed toward developing innovative treatment modalities. Primarily, monoclonal antibodies have been extensively investigated for their efficacy in influencing specific pathological pathways not yet targeted. Emerging approaches emphasizing cellular mechanisms, such as chimeric antigen receptor T cell therapy targeting immunological cells, are attracting increasing interest. The evolving understanding of microglia and the involvement of ferroptotic mechanisms in MS pathogenesis presents further avenues for targeted therapies. Moreover, innovative treatment strategies extend beyond conventional approaches to encompass interventions that target alterations in microbiota composition and dietary modifications. These adjunctive therapies hold promise as complementary methods for the holistic management of MS. This narrative review aims to summarize current therapies and outline potential treatment methods for individuals with MS.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/terapia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia
6.
Immunol Res ; 72(4): 554-565, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38446328

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease that leads to demyelination and damage to the central nervous system. It is well known, the significance of the involvement and influence of the immune system in the development and course of MS. Nowadays, more and more studies are demonstrating that an important factor that affects the action of the immune system is the gut microbiota. Changes in the composition and interrelationships in the gut microbiota have a significant impact on the course of MS. Dysbiosis affects the disease course mainly by influencing the immune system directly but also by modifying the secreted metabolites and increasing mucosal permeability. The essential metabolites affecting the course of MS are short-chain fatty acids, which alter pro- and anti-inflammatory responses in the immune system but also increase the permeability of the intestinal wall and the blood-brain barrier. Dietary modification alone can have a significant impact on MS. Based on these interactions, new treatments for MS are being developed, including probiotics administration, supplementation of bacterial metabolites, fecal microbiota transplantation, and dietary changes. Further studies may serve to develop new drugs and therapeutic approaches for MS.


Assuntos
Disbiose , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Esclerose Múltipla , Probióticos , Humanos , Microbioma Gastrointestinal/imunologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/microbiologia , Esclerose Múltipla/terapia , Animais , Disbiose/imunologia , Probióticos/uso terapêutico , Probióticos/administração & dosagem , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Ácidos Graxos Voláteis/metabolismo
7.
Eur J Ophthalmol ; : 11206721241237309, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433348

RESUMO

Physiological adaptation of the eye to the visual perception of near objects consists of the "near triad": convergence, accommodation, and pupil miosis. Normally, these tend to revert when one stops fixating on a near object. Spasm of the near reflex (SNR) is a pathological phenomenon, which manifests itself by the persistence of the above-mentioned adjustments, which prevents the eye from returning to its relaxed state. In this narrative review, we aim to summarize the etiology, diagnostics, treatment, and prevention of SNR. The literature review was performed by searching online databases. The clinical presentation of SNR is diverse; it presents as isolated accommodative spasm more frequently than impairment of all three components of the near triad. Patients usually present with fluctuations in visual acuity, blurred vision, diplopia, and asthenopia. The etiology is not fully understood. Potential causes include neuroanatomic, organic, and psychogenic disorders. The diagnosis is clinical, based on the constellation of symptoms and assessment of the near triad. The diagnostic golden standard is a cycloplegic examination of refraction, preferably using cyclopentolate hydrochloride (1%, 0.5%, or 0.1% solution). The first-line treatment requires the administration of a cycloplegic drug in combination with plus lenses, flipper lenses, optical fogging, or miotics. For secondary cases, causal treatment should be implemented. Prevention of SNR should be based on eliminating modifiable risk factors. We propose including screening for SNR symptoms in every ophthalmic examination, especially among patients with psychogenic or neural disorders, after brain trauma, or young adults spending much time in front of computer screens.

8.
J Vis Exp ; (210)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39248457

RESUMO

A rodent eyeball is a powerful tool for researching the pathomechanisms of many ophthalmic diseases, such as glaucoma, hypertensive retinopathy, and many more. Preclinical experiments enable researchers to examine the efficacy of novel drugs, develop new methods of treatment, or seek new pathomechanisms involved in the disease's onset or progression. A histological examination provides a lot of information necessary to assess the effects of the conducted experiments and can reveal degeneration, tissue remodeling, infiltration, and many other pathologies. In clinical research, there is rarely any chance of obtaining eye tissue suitable for a histological examination, which is why researchers should take advantage of the opportunity offered by the examination of eyeballs from rodents. This manuscript presents a protocol for the histological preparation of rodent eyeballs' sections. The procedure is presented for the eyeballs of mice and rats and has the following steps: (i) harvesting the eyeball, (ii) preserving the eyeball for further analysis, (iii) processing the tissue in paraffin, (iv) preparing slides, (v) staining with hematoxylin and eosin, (vi) assessing the tissue under a light microscope. With the proposed method, the retina can be easily visualized and assessed in detail.


Assuntos
Retina , Animais , Camundongos , Ratos , Olho/anatomia & histologia
9.
Front Microbiol ; 14: 1118529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760508

RESUMO

The gastrointestinal tract of the human is inhabited by about 5 × 1013 bacteria (of about 1,000 species) as well as archaea, fungi, and viruses. Gut microbiota is known to influence the host organism, but the host may also affect the functioning of the microbiota. This bidirectional cooperation occurs in three main inter-organ signaling: immune, neural, and endocrine. Immune communication relies mostly on the cytokines released by the immune cells into circulation. Also, pathogen-associated or damage-associated molecular patterns (PAMPs or DAMPs) may enter circulation and affect the functioning of the internal organs and gut microbiota. Neural communication relies mostly on the direct anatomical connections made by the vagus nerve, or indirect connections via the enteric nervous system. The third pathway, endocrine communication, is the broadest one and includes the hypothalamic-pituitary-adrenal axis. This review focuses on presenting the latest data on the role of the gut microbiota in inter-organ communication with particular emphasis on the role of neurotransmitters (catecholamines, serotonin, gamma-aminobutyric acid), intestinal peptides (cholecystokinin, peptide YY, and glucagon-like peptide 1), and bacterial metabolites (short-chain fatty acids).

10.
Arch Immunol Ther Exp (Warsz) ; 71(1): 10, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964399

RESUMO

Microglia are the resident immune cells of the central nervous system, playing a role in the inflammatory process development and resolution, presenting two main phenotypes, pro-inflammatory M1, and anti-inflammatory M2. Therapies affecting the microglia phenotype may be beneficial in treating inflammatory neurodegenerative diseases. In our experiments, we used the animal multiple sclerosis model, experimental allergic encephalomyelitis (EAE). Rats were treated during the pre- or symptomatic phase of the disease with cyclophosphamide, followed by hematopoietic stem cell transplantation, and with/without post-transplantation cyclophosphamide. Our study aimed to analyze the microglia phenotype in animals subjected to this treatment. The number of M1 cells in the spinal cord, and inducible nitric oxide synthase (iNOS) levels in the brain were similar in all experimental groups. The differences were observed in M2 cells number and arginase 1 (Arg1) levels, which were decreased in EAE animals, and increased after treatment in the symptomatic phase of EAE, and in the pre-symptomatic phase, but only with post-transplantation cyclophosphamide. Analysis of gene expression in the brain showed decreased iNOS expression in EAE animals treated in the symptomatic phase of EAE and no differences in Arg1 expression. Results indicate that treatment applied to experimental animals influences the microglia phenotype, promoting differentiation towards M2 cells.


Assuntos
Encefalomielite Autoimune Experimental , Transplante de Células-Tronco Hematopoéticas , Ratos , Animais , Camundongos , Encefalomielite Autoimune Experimental/terapia , Microglia/metabolismo , Fenótipo , Ciclofosfamida/uso terapêutico , Camundongos Endogâmicos C57BL
11.
Front Pharmacol ; 13: 846830, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401203

RESUMO

Recently, the possibility of cross-kingdom gene expression regulation by miRNAs from other species ("xenomiRs"), specifically from plants, has acquired scientific meaning. Based on the one of oldest methods for dealing with inflammation via the use of cabbage leaf compresses, we investigated the effects of Brassica oleracea derived miR172a on the potential human target gene encoding FAN (Factor Associated with Neutral Sphingomyelinase Activation) protein. In vitro experiments showed a decrease in FAN protein levels in both human and mouse cells transfected with bol-miRNA172a. As the FAN protein mediates inflammatory responses, the potential of miR172a to mitigate the inflammatory process was tested in a mouse model of rheumatoid arthritis. Animal studies showed the decreased oedema of inflamed paws in mouse with rheumatoid arthritis model induced after treatment with miR172a.

12.
Exp Neurol ; 353: 114059, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35367456

RESUMO

Major Depressive Disorder (MDD) with Peripartum Onset was classified in 2013 by the Diagnostic and Statistical Manual, Fifth Edition (DMS-5) and approved in 2019 by the World Health Organization (WHO). These diagnostic revisions call for the development of new animal models of maternal depression, emphasizing the pregnancy period. We have recently described a novel rat model of maternal MDD with a Peripartum Onset. Exposure to pre-gestational chronic mild stress (CMS) with repeated restrain resulted in maternal depressive-like behavior and impacted offspring's neurodevelopment. The present study examined gender differences in short- vs. long-term neurodevelopmental impact of pre-gestational maternal stress. Stress response was assessed in Sprague Dawley CMS-exposed dams (n=7) by metabolic, hormonal, and behavioral changes and compared to controls dams (n=7). Short-term impact of maternal stress on offspring was examined in terms of metabolic, neurodevelopmental, and behavioral tests in male (n=40) and female (n=35) adolescent offspring on a postnatal day (PD) 48; the long-term impact was assessed in adult male (n=13) and female (n=12) offspring on PD 225. Brain tissue was collected from adolescent and adult offspring for biochemical analysis. Maternal stress was associated with decreased body weight and increased urinary corticosterone during the pre-pregnancy period, but depressive-like behavior was delayed until later in pregnancy. No significant neurodevelopmental changes in suckling male or female offspring derived from the stress-exposed dams were observed. However, adolescent male and female offspring of stress-exposed dams displayed an increased depressive-like behavior and gender-dependent increase in anxiety-like behavior in female offspring. These changes were associated with a brain-region-specific increase in brain-derived neurotrophic factor (BDNF) protein and BDNF receptor (TrkB) mRNA in males. Behavioral changes observed in the adolescents receded in adult male and female offspring. However, plasma BDNF was elevated in stress-exposed adult female offspring. These results suggest that pre-gestational maternal stress is associated with gender-dependent short- vs. long-term neurodevelopmental impact in the offspring. Presented data are of significant public health relevance, and there is an urgent need for further research to confirm these findings and probe the underlying mechanisms.


Assuntos
Transtorno Depressivo Maior , Efeitos Tardios da Exposição Pré-Natal , Adolescente , Animais , Ansiedade/genética , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/etiologia , Transtorno Depressivo Maior/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Estresse Psicológico/complicações
13.
Immunotargets Ther ; 10: 237-246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268256

RESUMO

CD52 is a small surface glycoprotein composed of 12 amino acids. CD52 is found mostly on the surface of mature immune cells, such as lymphocytes, monocytes, eosinophils, and dendritic cells, as well as the male genital tract: within the epididymis and on the surface of mature sperm. Low CD52 expression is also found in neutrophils. CD52 function is not fully understood, although experiments with anti-CD52 antibodies have shown that CD52 is essential for lymphocyte transendothelial migration and may contribute to costimulation of CD4+ T cells and T-cell activation and proliferation. Although knowledge about exact CD52 function is still poor, CD52 presence on the surface of a broad spectrum of immune cells makes it a therapeutic target, especially in immunomediated diseases, such as multiple sclerosis. In multiple sclerosis, alemtuzumab is registered for adult patients with the relapsing-remitting form of the disease defined by clinical and imaging features. Despite the high efficacy of the drug, the main issue is its safety. The main adverse effects of alemtuzumab are associated with drug infusion due to cytokine release and cytotoxic effects of antibodies associated with lymphocyte depletion, which leads to immunosuppression, and secondary autoimmunity that may be the effect of excessive B-cell repopulation and cancer. This review presents current knowledge on the drug's mechanism of action, efficacy and safety data from clinical trials, and real-world observations, including available though scarce data on using alemtuzumab in the COVID era.

14.
Antioxidants (Basel) ; 10(11)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34829613

RESUMO

Age-related macular degeneration (AMD) and glaucoma are ophthalmic neurodegenerative diseases responsible for irreversible vision loss in the world population. Only a few therapies can be used to slow down the progression of these diseases and there are no available treatment strategies for reversing the degeneration of the neural retina. In AMD, the pathological process causes the malfunction and damage of the retinal pigmented epithelium and photoreceptors in the macula. In glaucoma, damage of the retinal ganglion cells and their axons is observed and treatment strategies are limited to intraocular pressure lowering. Therefore, other prophylactic and/or therapeutic methods are needed. Oxidative stress is involved in the neurodegenerative process accompanying both AMD and glaucoma; therefore, the use of antioxidant agents would clearly be beneficial, which is supported by the decreased prevalence and progression of AMD in patients adherent to a diet naturally rich in antioxidants. Dietary antioxidants are easily available and their use is based on the natural route of administration. Many preclinical studies both in vitro and using animal models of retinal degeneration showed the efficacy of dietary antioxidants, which was further proved in clinical trials. Resveratrol is beneficial both in AMD and glaucoma animal models, but confirmed only among AMD patients. For AMD, carotenoids and omega-3 fatty acids were also proved to be sufficient in preventing neurodegeneration. For glaucoma, coenzyme Q10 and alpha-lipoic acid showed efficacy for decreasing retinal ganglion cell loss and inhibiting the accompanying destructive processes. Interestingly, the benefits of vitamins, especially vitamin E was not confirmed, neither in preclinical nor in clinical studies.

15.
Arch Immunol Ther Exp (Warsz) ; 69(1): 17, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34181099

RESUMO

Experimental allergic encephalomyelitis (EAE) is the animal model of multiple sclerosis (MS). Autologous hematopoietic stem cell transplantation (AHSCT) has recently been recognized as the standard treatment for MS. The aim of our experiment was to investigate the effect of AHSCT with the addition of low-dose post-transplantation cyclophosphamide (Cy) on EAE in rats. Low dose post-transplantation Cy is used in haploidentical HSCT to reduce the risk of graft versus host disease. We hypothesized that it could bring additional benefit in autologous HSCT in autoimmune diseases. Rats with evoked EAE were treated with high dose (125 mg/kg) Cy, followed by AHSCT or high dose (125 mg/kg) Cy followed by AHSCT followed by low dose (20 mg/kg) Cy in two-time schedules-with the therapy applied during the pre-symptomatic or symptomatic phase of the disease. Both AHSCT and AHSCT with post-transplantation Cy in accordance with both time schedules reduce the intensity of the inflammatory response in the CNS, in comparison with non-treated EAE rats. The reduction of clinical symptoms was present in all AHSCT treatment protocols, however, it was significantly stronger when post-transplantation Cy was given during the symptomatic phase of the disease. AHSCT with the addition of post HSCT low dose Cy improved the results of AHSCT by not only reducing the intensity of inflammation in the CNS but also by significantly reducing the clinical symptoms in treated animals when compared to AHSCT alone. We provide an experimental rationale that the addition of post-transplantation Cy may improve the outcome of HSCT in MS.


Assuntos
Ciclofosfamida/administração & dosagem , Encefalomielite Autoimune Experimental/terapia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Esclerose Múltipla/terapia , Animais , Esquema de Medicação , Encefalomielite Autoimune Experimental/imunologia , Feminino , Doença Enxerto-Hospedeiro/imunologia , Humanos , Esclerose Múltipla/imunologia , Período Pós-Operatório , Ratos , Transplante Autólogo/efeitos adversos
16.
Pharmaceutics ; 13(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375279

RESUMO

Recently, a well-known anti-alcohol agent, disulfiram (DSF), has gain much interest, as it was found to be effective in the treatment of cocaine abusers, thus also giving hope for patients addicted to opioids and other illicit drugs. Therefore, this study was aimed to investigate the possible outcome that might occur within the subacute co-administration of both morphine (MRF) and DSF in rats, but in the absence of ethanol challenge. As observed, intraperitoneal DSF dose-dependently enhanced MRF-mediated analgesia with the maximal efficacy at a dose of 100 mg/kg. Furthermore, MRF-induced tolerance and aggressive behavior were significantly reduced by DSF (100 mg/kg, i.p.) in comparison to MRF solely. Nonetheless, significant blood biochemical markers of hepatotoxicity were found (i.e., alteration in the levels of glutathione, blood urea nitrogen, etc.), following a combination of both drugs. Likewise, histological analysis of liver tissue revealed severe changes in the group of DSF + MRF, which includes swelling, cell death, damage to certain vessels, and hemorrhages into the liver parenchyma. Our findings indicate that DSF should be used with extreme caution, especially within the course of subacute concomitant use with MRF, as several possible side effects may take place.

17.
Acta Pharm Sin B ; 10(8): 1440-1452, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32963942

RESUMO

The behavioral responses exerted by spinal administration of the opioid-neurotensin hybrid peptide, PK23, were studied in adult male rats. The antinociceptive effect upon exposure to a thermal stimulus, as well as tolerance development, was assessed in an acute pain model. The PK23 chimera at a dose of 10 nmol/rat produced a potent pain-relieving effect, especially after its intrathecal administration. Compared with intrathecal morphine, this novel compound was found to possess a favourable side effect profile characterized by a reduced scratch reflex, delayed development of analgesic tolerance or an absence of motor impairments when given in the same manner, though some animals died following barrel rotation as a result of its i.c.v. administration (in particular at doses higher than 10 nmol/rat). Nonetheless, these results suggest the potential use of hybrid compounds encompassing both opioid and neurotensin structural fragments in pain management. This highlights the enormous potential of synthetic neurotensin analogues as promising future analgesics.

18.
Acta Neurobiol Exp (Wars) ; 69(1): 73-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19325643

RESUMO

The aim of this study was to use the hydrolysate of pig spinal cord proteins to induce oral tolerance in the animal model of sclerosis multiplex - experimental allergic encephalomyelitis. The female Lewis rats were fed with hydrolysate of pig spinal cord proteins in two doses for one week before immunization, which was induced by injection of guinea pig spinal cord homogenate. At the peak of clinical symptoms (the 13th day post immunization) the rats were sacrificed and the spleen removed. Splenocytes were suspended in a culture medium and placed in microculture plates. The cells were stimulated with homogenate. The cells were cultured for seven days. Proliferation of splenocytes was estimated by means of methyl-3H thymidine incorporation. In supernatants of cultures of splenocytes the level of cytokines INF-gamma, IL-10, IL-4, and TGF-gamma was measured. It was demonstrated that homogenate-induced splenocytes of hydrolysate-fed rats gave rise to low proliferation as compared to the controls used. The IFN-gamma was inhibited in hydrolysate-fed animals. The hydrolysate of pig spinal cord proteins has a modulatory effect on the immune reaction, particularly on the orally-induced antigen-specific modulation of autoimmune response.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Interferon gama/metabolismo , Interleucina-10/metabolismo , Hidrolisados de Proteína/imunologia , Medula Espinal/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/prevenção & controle , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Cobaias , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Hidrolisados de Proteína/farmacologia , Ratos , Ratos Endogâmicos Lew , Índice de Gravidade de Doença , Medula Espinal/citologia , Baço/citologia , Fatores de Tempo
19.
Biofabrication ; 11(4): 044101, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31151123

RESUMO

Osteochondral (OC) tissue is a biphasic material comprised of articular cartilage integrated atop subchondral bone. Damage to this tissue is highly problematic, owing to its intrinsic inability to regenerate functional tissue in response to trauma or disease. Further, the function of the tissue is largely conferred by its compartmentalized zonal microstructure and composition. Current clinical treatments fail to regenerate new tissue that recapitulates this zonal structure. Consequently, regenerated tissue often lacks long-term stability. To address this growing problem, we propose the development of tissue engineered biomaterials that mimic the zonal cartilage organization and extracellular matrix composition through the use of a microfluidic printing head bearing a mixing unit and incorporated into an extrusion-based bioprinter. The system is devised so that multiple bioinks can be delivered either individually or at the same time and rapidly mixed to the extrusion head, and finally deposited through a coaxial nozzle. This enables the deposition of either layers or continuous gradients of chemical, mechanical and biological cues and fabrication of scaffolds with very high shape fidelity and cell viability. Using such a system we bioprinted cell-laden hydrogel constructs recapitulating the layered structure of cartilage, namely, hyaline and calcified cartilage. The construct was assembled out of two bioinks specifically formulated to mimic the extracellular matrices present in the targeted tissues and to ensure the desired biological response of human bone marrow-derived mesenchymal stem cells and human articular chondrocytes. Homogeneous and gradient constructs were thoroughly characterized in vitro with respect to long-term cell viability and expression of hyaline and hypertrophic markers by means of real-time quantitative PCR and immunocytochemical staining. After 21 days of in vitro culture, we observed production of zone-specific matrix. The PCR analysis demonstrated upregulated expression of hypertrophic markers in the homogenous equivalent of calcified cartilage but not in the gradient heterogeneous construct. The regenerative potential was assessed in vivo in a rat model. The histological analysis of surgically damaged rat trochlea revealed beneficial effect of the bioprinted scaffolds on regeneration of OC defect when compared to untreated control.


Assuntos
Bioimpressão , Cartilagem Articular/patologia , Hidrogéis/farmacologia , Microfluídica/instrumentação , Impressão Tridimensional , Regeneração , Animais , Cartilagem Articular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Humanos , Implantes Experimentais , Tinta , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Ratos Wistar , Regeneração/efeitos dos fármacos
20.
Physiol Behav ; 199: 258-264, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30465806

RESUMO

This study aimed to develop an animal model of human depression during pregnancy and lactation to examine the effect of maternal, perinatal depression on offspring development. Maternal depression during pregnancy affects up to 20% of women and is a risk factor for both the developmental and long-term health issues. It is often comorbid with the cardiovascular disease (CVD) that affects the uteroplacental circulation and impacts offspring development. More than half of the expecting mothers with depression use antidepressants that cross the placenta and may interfere with the neurodevelopmental programming. Thus, depressed pregnant mothers face a difficult choice whether "to use or not to use" antidepressant therapy, since both untreated depression and antenatal antidepressant exposure present increased risks of neurodevelopmental pathologies. The ongoing clinical debate presents inconclusive data, while the existing animal models of maternal depression do not include early gestational periods, and, do not monitor depressive-like behavior nor address the cardiovascular abnormalities. The presented model includes pregestational depressive behavior extending into pregnancy and lactation, periods that have not been previously examined. Rat dams exposed to pre-gestational chronic mild stress (CMS) developed a sustained decrease in self-grooming behavior, correlated with hormonal, behavioral, and cardiac changes persisting through the postpartum period. Preliminary data indicate neurodevelopmental delays, behavioral and cardiac abnormalities, and altered levels of both the brain and the heart markers in the offspring of stressed dams. Furthermore, the preliminary data predict that maternal pregnancy during the perinatal period is likely to impact the neurodevelopmental process in a sex-dependent manner. Thus the presented here model (PG-LAC CMS) fulfills both the face and the construct validity criteria for maternal stress-induced depression during pregnancy and postpartum that may facilitate further studies of the relative risks of untreated vs. antidepressant-treated maternal depression during pregnancy to the mother and her offspring.


Assuntos
Comportamento Animal/fisiologia , Doenças Cardiovasculares/fisiopatologia , Depressão Pós-Parto/fisiopatologia , Transtorno Depressivo/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Comportamento Social , Animais , Ansiedade/complicações , Ansiedade/fisiopatologia , Doenças Cardiovasculares/complicações , Depressão Pós-Parto/complicações , Transtorno Depressivo/complicações , Modelos Animais de Doenças , Feminino , Gravidez , Complicações na Gravidez/fisiopatologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA