Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 108(9): 1765-1779, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34450030

RESUMO

An important goal of clinical genomics is to be able to estimate the risk of adverse disease outcomes. Between 5% and 10% of individuals with ulcerative colitis (UC) require colectomy within 5 years of diagnosis, but polygenic risk scores (PRSs) utilizing findings from genome-wide association studies (GWASs) are unable to provide meaningful prediction of this adverse status. By contrast, in Crohn disease, gene expression profiling of GWAS-significant genes does provide some stratification of risk of progression to complicated disease in the form of a transcriptional risk score (TRS). Here, we demonstrate that a measured TRS based on bulk rectal gene expression in the PROTECT inception cohort study has a positive predictive value approaching 50% for colectomy. Single-cell profiling demonstrates that the genes are active in multiple diverse cell types from both the epithelial and immune compartments. Expression quantitative trait locus (QTL) analysis identifies genes with differential effects at baseline and week 52 follow-up, but for the most part, differential expression associated with colectomy risk is independent of local genetic regulation. Nevertheless, a predicted polygenic transcriptional risk score (PPTRS) derived by summation of transcriptome-wide association study (TWAS) effects identifies UC-affected individuals at 5-fold elevated risk of colectomy with data from the UK Biobank population cohort studies, independently replicated in an NIDDK-IBDGC dataset. Prediction of gene expression from relatively small transcriptome datasets can thus be used in conjunction with TWASs for stratification of risk of disease complications.


Assuntos
Colectomia/estatística & dados numéricos , Colite Ulcerativa/cirurgia , Doença de Crohn/cirurgia , Locos de Características Quantitativas , Transcriptoma , Bancos de Espécimes Biológicos , Estudos de Coortes , Colite Ulcerativa/complicações , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/genética , Colo/metabolismo , Colo/patologia , Colo/cirurgia , Doença de Crohn/complicações , Doença de Crohn/diagnóstico , Doença de Crohn/genética , Conjuntos de Dados como Assunto , Progressão da Doença , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Herança Multifatorial , Prognóstico , Medição de Risco , Reino Unido
2.
Gut ; 72(7): 1271-1287, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36109152

RESUMO

OBJECTIVE: IBD therapies and treatments are evolving to deeper levels of remission. Molecular measures of disease may augment current endpoints including the potential for less invasive assessments. DESIGN: Transcriptome analysis on 712 endoscopically defined inflamed (Inf) and 1778 non-inflamed (Non-Inf) intestinal biopsies (n=498 Crohn's disease, n=421 UC and 243 controls) in the Mount Sinai Crohn's and Colitis Registry were used to identify genes differentially expressed between Inf and Non-Inf biopsies and to generate a molecular inflammation score (bMIS) via gene set variance analysis. A circulating MIS (cirMIS) score, reflecting intestinal molecular inflammation, was generated using blood transcriptome data. bMIS/cirMIS was validated as indicators of intestinal inflammation in four independent IBD cohorts. RESULTS: bMIS/cirMIS was strongly associated with clinical, endoscopic and histological disease activity indices. Patients with the same histologic score of inflammation had variable bMIS scores, indicating that bMIS describes a deeper range of inflammation. In available clinical trial data sets, both scores were responsive to IBD treatment. Despite similar baseline endoscopic and histologic activity, UC patients with lower baseline bMIS levels were more likely treatment responders compared with those with higher levels. Finally, among patients with UC in endoscopic and histologic remission, those with lower bMIS levels were less likely to have a disease flare over time. CONCLUSION: Transcriptionally based scores provide an alternative objective and deeper quantification of intestinal inflammation, which could augment current clinical assessments used for disease monitoring and have potential for predicting therapeutic response and patients at higher risk of disease flares.


Assuntos
Colite Ulcerativa , Doença de Crohn , Humanos , Colite Ulcerativa/patologia , Inflamação/genética , Inflamação/patologia , Doença de Crohn/patologia , Biópsia , Biomarcadores , Mucosa Intestinal/patologia
3.
Hum Mol Genet ; 30(6): 514-523, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33601420

RESUMO

Epidemiological studies have long recognized risky behaviors as potentially modifiable factors for the onset and flares of inflammatory bowel disease (IBD); yet, the underlying mechanisms are largely unknown. Recently, the genetic susceptibilities to cigarette smoking, alcohol and cannabis use [i.e. substance use (SU)] have been characterized by well-powered genome-wide association studies (GWASs). We aimed to assess the impact of genetic determinants of SU on IBD risk. Using Mount Sinai Crohn's and Colitis Registry (MSCCR) cohort of 1058 IBD cases and 188 healthy controls, we computed the polygenic risk score (PRS) for SU and correlated them with the observed IBD diagnoses, while adjusting for genetic ancestry, PRS for IBD and SU behavior at enrollment. The results were validated in a pediatric cohort with no SU exposure. PRS of alcohol consumption (DrnkWk), smoking cessation and age of smoking initiation, were associated with IBD risk in MSCCR even after adjustment for PRSIBD and actual smoking status. One interquartile range decrease in PRSDrnkWk was significantly associated to higher IBD risk (i.e. inverse association) (with odds ratio = 1.65 and 95% confidence interval: 1.32, 2.06). The association was replicated in a pediatric Crohn's disease cohort. Colocalization analysis identified a locus on chromosome 16 with polymorphisms in IL27, SULT1A2 and SH2B1, which reached genome-wide statistical significance in GWAS (P < 7.7e-9) for both alcohol consumption and IBD risk. This study demonstrated that the genetic predisposition to SU was associated with IBD risk, independent of PRSIBD and in the absence of SU behaviors. Our study may help further stratify individuals at risk of IBD.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Biomarcadores/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Doenças Inflamatórias Intestinais/diagnóstico , Polimorfismo de Nucleotídeo Único , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Masculino , Fatores de Risco
4.
Gastroenterology ; 162(3): 828-843.e11, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34780722

RESUMO

BACKGROUND & AIMS: Polygenic and environmental factors are underlying causes of inflammatory bowel disease (IBD). We hypothesized that integration of the genetic loci controlling a metabolite's abundance, with known IBD genetic susceptibility loci, may help resolve metabolic drivers of IBD. METHODS: We measured the levels of 1300 metabolites in the serum of 484 patients with ulcerative colitis (UC) and 464 patients with Crohn's disease (CD) and 365 controls. Differential metabolite abundance was determined for disease status, subtype, clinical and endoscopic disease activity, as well as IBD phenotype including disease behavior, location, and extent. To inform on the genetic basis underlying metabolic diversity, we integrated metabolite and genomic data. Genetic colocalization and Mendelian randomization analyses were performed using known IBD risk loci to explore whether any metabolite was causally associated with IBD. RESULTS: We found 173 genetically controlled metabolites (metabolite quantitative trait loci, 9 novel) within 63 non-overlapping loci (7 novel). Furthermore, several metabolites significantly associated with IBD disease status and activity as defined using clinical and endoscopic indexes. This constitutes a resource for biomarker discovery and IBD biology insights. Using this resource, we show that a novel metabolite quantitative trait locus for serum butyrate levels containing ACADS was not supported as causal for IBD; replicate the association of serum omega-6 containing lipids with the fatty acid desaturase 1/2 locus and identify these metabolites as causal for CD through Mendelian randomization; and validate a novel association of serum plasmalogen and TMEM229B, which was predicted as causal for CD. CONCLUSIONS: An exploratory analysis combining genetics and unbiased serum metabolome surveys can reveal novel biomarkers of disease activity and potential mediators of pathology in IBD.


Assuntos
Acil-CoA Desidrogenase/genética , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Doença de Crohn/genética , Doença de Crohn/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Butiratos/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Colite Ulcerativa/sangue , Colite Ulcerativa/tratamento farmacológico , Doença de Crohn/sangue , Doença de Crohn/tratamento farmacológico , Estudos Transversais , Fezes/química , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Células HEK293 , Humanos , Masculino , Análise da Randomização Mendeliana , Metaboloma , Pessoa de Meia-Idade , Plasmalogênios/sangue , Plasmalogênios/genética , Locos de Características Quantitativas , Índice de Gravidade de Doença , Adulto Jovem
5.
Gastroenterology ; 161(6): 1953-1968.e15, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34480882

RESUMO

BACKGROUND AND AIMS: Disease extent varies in ulcerative colitis (UC) from proctitis to left-sided colitis to pancolitis and is a major prognostic factor. When the extent of UC is limited there is often a sharp demarcation between macroscopically involved and uninvolved areas and what defines this or subsequent extension is unknown. We characterized the demarcation site molecularly and determined genes associated with subsequent disease extension. METHODS: We performed RNA sequence analysis of biopsy specimens from UC patients with endoscopically and histologically confirmed limited disease, of which a subset later extended. Biopsy specimens were obtained from the endoscopically inflamed upper (proximal) limit of disease, immediately adjacent to the uninvolved colon, as well as at more proximal, endoscopically uninflamed colonic segments. RESULTS: Differentially expressed genes were identified in the endoscopically inflamed biopsy specimens taken at each patient's most proximal diseased site relative to healthy controls. Expression of these genes in the more proximal biopsy specimens transitioned back to control levels abruptly or gradually, the latter pattern supporting the concept that disease exists beyond the endoscopic disease demarcation site. The gradually transitioning genes were associated with inflammation, angiogenesis, glucuronidation, and homeodomain pathways. A subset of these genes in inflamed biopsy specimens was found to predict disease extension better than clinical features and were responsive to biologic therapies. Network analysis revealed critical roles for interferon signaling in UC inflammation and poly(ADP-ribose) polymerase 14 (PARP14) was a predicted key driver gene of extension. Higher PARP14 protein levels were found in inflamed biopsy specimens of patients with limited UC that subsequently extended. CONCLUSION: Molecular predictors of disease extension reveal novel strategies for disease prognostication and potential therapeutic targeting.


Assuntos
Colite Ulcerativa/genética , Colo/metabolismo , Perfilação da Expressão Gênica , Poli(ADP-Ribose) Polimerases/genética , Análise de Sequência de RNA , Transcriptoma , Teorema de Bayes , Biópsia , Estudos de Casos e Controles , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Colo/patologia , Estudos Transversais , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Gravidade do Paciente , Poli(ADP-Ribose) Polimerases/metabolismo , Valor Preditivo dos Testes , Transdução de Sinais
6.
Gastroenterology ; 160(1): 287-301.e20, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980345

RESUMO

BACKGROUND AND AIMS: The presence of gastrointestinal symptoms and high levels of viral RNA in the stool suggest active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication within enterocytes. METHODS: Here, in multiple, large cohorts of patients with inflammatory bowel disease (IBD), we have studied the intersections between Coronavirus Disease 2019 (COVID-19), intestinal inflammation, and IBD treatment. RESULTS: A striking expression of ACE2 on the small bowel enterocyte brush border supports intestinal infectivity by SARS-CoV-2. Commonly used IBD medications, both biologic and nonbiologic, do not significantly impact ACE2 and TMPRSS2 receptor expression in the uninflamed intestines. In addition, we have defined molecular responses to COVID-19 infection that are also enriched in IBD, pointing to shared molecular networks between COVID-19 and IBD. CONCLUSIONS: These data generate a novel appreciation of the confluence of COVID-19- and IBD-associated inflammation and provide mechanistic insights supporting further investigation of specific IBD drugs in the treatment of COVID-19. Preprint doi: https://doi.org/10.1101/2020.05.21.109124.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/enzimologia , Doenças Inflamatórias Intestinais/enzimologia , Mucosa Intestinal/enzimologia , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Animais , Anti-Inflamatórios/uso terapêutico , Antivirais/uso terapêutico , COVID-19/genética , COVID-19/virologia , Estudos de Casos e Controles , Ensaios Clínicos como Assunto , Estudos Transversais , Modelos Animais de Doenças , Feminino , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/virologia , Estudos Longitudinais , Masculino , Camundongos , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases/genética , Transdução de Sinais , Tratamento Farmacológico da COVID-19
7.
Brief Bioinform ; 21(4): 1182-1195, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31190075

RESUMO

Sepsis is a series of clinical syndromes caused by the immunological response to infection. The clinical evidence for sepsis could typically attribute to bacterial infection or bacterial endotoxins, but infections due to viruses, fungi or parasites could also lead to sepsis. Regardless of the etiology, rapid clinical deterioration, prolonged stay in intensive care units and high risk for mortality correlate with the incidence of sepsis. Despite its prevalence and morbidity, improvement in sepsis outcomes has remained limited. In this comprehensive review, we summarize the current landscape of risk estimation, diagnosis, treatment and prognosis strategies in the setting of sepsis and discuss future challenges. We argue that the advent of modern technologies such as in-depth molecular profiling, biomedical big data and machine intelligence methods will augment the treatment and prevention of sepsis. The volume, variety, veracity and velocity of heterogeneous data generated as part of healthcare delivery and recent advances in biotechnology-driven therapeutics and companion diagnostics may provide a new wave of approaches to identify the most at-risk sepsis patients and reduce the symptom burden in patients within shorter turnaround times. Developing novel therapies by leveraging modern drug discovery strategies including computational drug repositioning, cell and gene-therapy, clustered regularly interspaced short palindromic repeats -based genetic editing systems, immunotherapy, microbiome restoration, nanomaterial-based therapy and phage therapy may help to develop treatments to target sepsis. We also provide empirical evidence for potential new sepsis targets including FER and STARD3NL. Implementing data-driven methods that use real-time collection and analysis of clinical variables to trace, track and treat sepsis-related adverse outcomes will be key. Understanding the root and route of sepsis and its comorbid conditions that complicate treatment outcomes and lead to organ dysfunction may help to facilitate identification of most at-risk patients and prevent further deterioration. To conclude, leveraging the advances in precision medicine, biomedical data science and translational bioinformatics approaches may help to develop better strategies to diagnose and treat sepsis in the next decade.


Assuntos
Medicina de Precisão , Sepse/diagnóstico , Sepse/terapia , Humanos , Prognóstico , Fatores de Risco , Sepse/patologia
8.
Ann Allergy Asthma Immunol ; 128(6): 677-681.e7, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35367347

RESUMO

BACKGROUND: Asthma is one of the most common chronic health conditions, and to leverage the wealth of data in the electronic medical record (EMR), it is important to be able to accurately identify asthma diagnosis. OBJECTIVE: We aimed to determine the rule-based algorithm with the most balanced performance for sensitivity and positive predictive value of asthma diagnosis. METHODS: We performed a diagnostic accuracy study of multiple rule-based algorithms intended to identify asthma diagnosis in the EMR. Algorithm performance was validated by manual chart review of 795 charts of patients seen in a multisite, tertiary-level, pulmonary specialty clinic using explicit diagnostic criteria to distinguish asthma cases from controls. RESULTS: An asthma diagnosis anywhere in the medical record had a 97% sensitivity and a 77% specificity for asthma (F-score 80) when tested on a validation set of asthma cases and nonasthma respiratory disease from a pulmonary specialty clinic. The most balanced performance was seen with asthma diagnosis restricted to an encounter, hospital problem, or problem list diagnosis with a sensitivity of 94% and specificity of 85% (F-score 84). High sensitivity was achieved with the modified Health Plan Employer Data and Information Set criteria and high specificity was achieved with the NUgene algorithm, an algorithm developed for identifying asthma cases by EMR for genome-wide association studies. CONCLUSION: Asthma diagnosis can be accurately identified for research purposes by restricting to encounter, hospital problem, or problem list diagnosis in a pulmonary specialty clinic. Additional rules lead to steep drop-offs in algorithm sensitivity in our population.


Assuntos
Asma , Registros Eletrônicos de Saúde , Algoritmos , Asma/diagnóstico , Asma/epidemiologia , Estudo de Associação Genômica Ampla , Humanos , Software
9.
Hum Genet ; 140(6): 865-877, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33452914

RESUMO

To further explore genetic links between complex traits, we developed a comprehensive framework to harmonize and integrate extensive genotype and phenotype data from the four well-characterized cohorts with the focus on cardiometabolic diseases deposited to the database of Genotypes and Phenotypes (dbGaP). We generated a series of polygenic risk scores (PRS) to investigate pleiotropic effects of loci that confer genetic risk for 19 common diseases and traits on body height, type 2 diabetes (T2D), and myocardial infarction (MI). In a meta-analysis of 20,021 subjects, we identified shared genetic determinants of Crohn's Disease (CD), a type of inflammatory bowel disease, and body height (p = 5.5 × 10-5). The association of PRS-CD with height was replicated in UK Biobank (p = 1.1 × 10-5) and an independent cohort of 510 CD cases and controls (1.57 cm shorter height per PRS-CD interquartile increase, p = 5.0 × 10-3 and a 28% reduction in CD risk per interquartile increase in PRS-height, p = 1.1 × 10-3, with the effect independent of CD diagnosis). A pathway analysis of the variants overlapping between PRS-height and PRS-CD detected significant enrichment of genes from the inflammatory, immune-mediated and growth factor regulation pathways. This finding supports the clinical observation of growth failure in patients with childhood-onset CD and demonstrates the value of using individual-level data from dbGaP in searching for shared genetic determinants. This information can help provide a refined insight into disease pathogenesis and may have major implications for novel therapies and drug repurposing.


Assuntos
Estatura/genética , Doença de Crohn/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Peptídeos e Proteínas de Sinalização Intercelular/genética , Infarto do Miocárdio/genética , Adulto , Estatura/imunologia , Criança , Doença de Crohn/imunologia , Doença de Crohn/patologia , Bases de Dados Genéticas , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/imunologia , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Masculino , Herança Multifatorial/imunologia , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Fenótipo , Fatores de Risco
10.
PLoS Genet ; 13(1): e1006565, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28129359

RESUMO

To date, no large scale, systematic description of the blood serum proteome has been performed in inflammatory bowel disease (IBD) patients. By using microarray technology, a more complete description of the blood proteome of IBD patients is feasible. It may help to achieve a better understanding of the disease. We analyzed blood serum profiles of 1128 proteins in IBD patients of European descent (84 Crohn's Disease (CD) subjects and 88 Ulcerative Colitis (UC) subjects) as well as 15 healthy control subjects, and linked protein variability to patient age (all cohorts) and genetic components (genotype data generated from CD patients). We discovered new, previously unreported aging-associated proteomic traits (such as serum Albumin level), confirmed previously reported results from different tissues (i.e., upregulation of APOE with aging), and found loss of regulation of MMP7 in CD patients. In carrying out a genome wide genotype-protein association study (proteomic Quantitative Trait Loci, pQTL) within the CD patients, we identified 41 distinct proteomic traits influenced by cis pQTLs (underlying SNPs are referred to as pSNPs). Significant overlaps between pQTLs and cis eQTLs corresponding to the same gene were observed and in some cases the QTL were related to inflammatory disease susceptibility. Importantly, we discovered that serum protein levels of MST1 (Macrophage Stimulating 1) were regulated by SNP rs3197999 (p = 5.96E-10, FDR<5%), an accepted GWAS locus for IBD. Filling the knowledge gap of molecular mechanisms between GWAS hits and disease susceptibility requires systematically dissecting the impact of the locus at the cell, mRNA expression, and protein levels. The technology and analysis tools that are now available for large-scale molecular studies can elucidate how alterations in the proteome driven by genetic polymorphisms cause or provide protection against disease. Herein, we demonstrated this directly by integrating proteomic and pQTLs with existing GWAS, mRNA expression, and eQTL datasets to provide insights into the biological processes underlying IBD and pinpoint causal genetic variants along with their downstream molecular consequences.


Assuntos
Envelhecimento/sangue , Predisposição Genética para Doença , Doenças Inflamatórias Intestinais/sangue , Proteoma/metabolismo , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Fator de Crescimento de Hepatócito/sangue , Ensaios de Triagem em Larga Escala , Humanos , Doenças Inflamatórias Intestinais/epidemiologia , Doenças Inflamatórias Intestinais/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Proteoma/genética , Proteínas Proto-Oncogênicas/sangue , Locos de Características Quantitativas
11.
J Med Internet Res ; 22(11): e24018, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33027032

RESUMO

BACKGROUND: COVID-19 has infected millions of people worldwide and is responsible for several hundred thousand fatalities. The COVID-19 pandemic has necessitated thoughtful resource allocation and early identification of high-risk patients. However, effective methods to meet these needs are lacking. OBJECTIVE: The aims of this study were to analyze the electronic health records (EHRs) of patients who tested positive for COVID-19 and were admitted to hospitals in the Mount Sinai Health System in New York City; to develop machine learning models for making predictions about the hospital course of the patients over clinically meaningful time horizons based on patient characteristics at admission; and to assess the performance of these models at multiple hospitals and time points. METHODS: We used Extreme Gradient Boosting (XGBoost) and baseline comparator models to predict in-hospital mortality and critical events at time windows of 3, 5, 7, and 10 days from admission. Our study population included harmonized EHR data from five hospitals in New York City for 4098 COVID-19-positive patients admitted from March 15 to May 22, 2020. The models were first trained on patients from a single hospital (n=1514) before or on May 1, externally validated on patients from four other hospitals (n=2201) before or on May 1, and prospectively validated on all patients after May 1 (n=383). Finally, we established model interpretability to identify and rank variables that drive model predictions. RESULTS: Upon cross-validation, the XGBoost classifier outperformed baseline models, with an area under the receiver operating characteristic curve (AUC-ROC) for mortality of 0.89 at 3 days, 0.85 at 5 and 7 days, and 0.84 at 10 days. XGBoost also performed well for critical event prediction, with an AUC-ROC of 0.80 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. In external validation, XGBoost achieved an AUC-ROC of 0.88 at 3 days, 0.86 at 5 days, 0.86 at 7 days, and 0.84 at 10 days for mortality prediction. Similarly, the unimputed XGBoost model achieved an AUC-ROC of 0.78 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. Trends in performance on prospective validation sets were similar. At 7 days, acute kidney injury on admission, elevated LDH, tachypnea, and hyperglycemia were the strongest drivers of critical event prediction, while higher age, anion gap, and C-reactive protein were the strongest drivers of mortality prediction. CONCLUSIONS: We externally and prospectively trained and validated machine learning models for mortality and critical events for patients with COVID-19 at different time horizons. These models identified at-risk patients and uncovered underlying relationships that predicted outcomes.


Assuntos
Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/mortalidade , Aprendizado de Máquina/normas , Pneumonia Viral/diagnóstico , Pneumonia Viral/mortalidade , Injúria Renal Aguda/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus , COVID-19 , Estudos de Coortes , Registros Eletrônicos de Saúde , Feminino , Mortalidade Hospitalar , Hospitalização/estatística & dados numéricos , Hospitais , Humanos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , Pandemias , Prognóstico , Curva ROC , Medição de Risco/métodos , Medição de Risco/normas , SARS-CoV-2 , Adulto Jovem
12.
J Clin Microbiol ; 57(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31578260

RESUMO

Whole-genome sequencing (WGS) of Staphylococcus aureus is increasingly used as part of infection prevention practices. In this study, we established a long-read technology-based WGS screening program of all first-episode methicillin-resistant Staphylococcus aureus (MRSA) blood infections at a major urban hospital. A survey of 132 MRSA genomes assembled from long reads enabled detailed characterization of an outbreak lasting several months of a CC5/ST105/USA100 clone among 18 infants in a neonatal intensive care unit (NICU). Available hospital-wide genome surveillance data traced the origins of the outbreak to three patients admitted to adult wards during a 4-month period preceding the NICU outbreak. The pattern of changes among complete outbreak genomes provided full spatiotemporal resolution of its progression, which was characterized by multiple subtransmissions and likely precipitated by equipment sharing between adults and infants. Compared to other hospital strains, the outbreak strain carried distinct mutations and accessory genetic elements that impacted genes with roles in metabolism, resistance, and persistence. This included a DNA recognition domain recombination in the hsdS gene of a type I restriction modification system that altered DNA methylation. Transcriptome sequencing (RNA-Seq) profiling showed that the (epi)genetic changes in the outbreak clone attenuated agr gene expression and upregulated genes involved in stress response and biofilm formation. Overall, our findings demonstrate the utility of long-read sequencing for hospital surveillance and for characterizing accessory genomic elements that may impact MRSA virulence and persistence.


Assuntos
Bacteriemia/epidemiologia , Infecção Hospitalar/epidemiologia , Surtos de Doenças , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Epidemiologia Molecular/métodos , Infecções Estafilocócicas/epidemiologia , Sequenciamento Completo do Genoma/métodos , Adulto , Bacteriemia/microbiologia , Bacteriemia/transmissão , Infecção Hospitalar/microbiologia , Infecção Hospitalar/transmissão , Transmissão de Doença Infecciosa , Genótipo , Hospitais , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Programas de Rastreamento/métodos , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/transmissão
13.
Mol Syst Biol ; 14(8): e7862, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150281

RESUMO

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes global epidemics of debilitating disease worldwide. To gain functional insight into the host cellular genes required for virus infection, we performed whole-blood RNA-seq, 37-plex mass cytometry of peripheral blood mononuclear cells (PBMCs), and serum cytokine measurements of acute- and convalescent-phase samples obtained from 42 children naturally infected with CHIKV Semi-supervised classification and clustering of single-cell events into 57 sub-communities of canonical leukocyte phenotypes revealed a monocyte-driven response to acute infection, with the greatest expansions in "intermediate" CD14++CD16+ monocytes and an activated subpopulation of CD14+ monocytes. Increases in acute-phase CHIKV envelope protein E2 expression were highest for monocytes and dendritic cells. Serum cytokine measurements confirmed significant acute-phase upregulation of monocyte chemoattractants. Distinct transcriptomic signatures were associated with infection timepoint, as well as convalescent-phase anti-CHIKV antibody titer, acute-phase viremia, and symptom severity. We present a multiscale network that summarizes all observed modulations across cellular and transcriptomic levels and their interactions with clinical outcomes, providing a uniquely global view of the biomolecular landscape of human CHIKV infection.


Assuntos
Febre de Chikungunya/genética , Vírus Chikungunya/genética , Imunidade Inata/genética , Transcriptoma/genética , Adolescente , Animais , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Febre de Chikungunya/transmissão , Febre de Chikungunya/virologia , Vírus Chikungunya/imunologia , Vírus Chikungunya/patogenicidade , Criança , Pré-Escolar , Culicidae/virologia , Citocinas/sangue , Citocinas/genética , Células Dendríticas/imunologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Humanos , Lactente , Recém-Nascido , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/imunologia , Monócitos/imunologia , Pediatria , Receptores de IgG/genética , Receptores de IgG/imunologia , Análise de Sequência de RNA , Transcriptoma/imunologia
14.
PLoS Genet ; 12(7): e1006137, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27390852

RESUMO

Recent systems-based analyses have demonstrated that sleep and stress traits emerge from shared genetic and transcriptional networks, and clinical work has elucidated the emergence of sleep dysfunction and stress susceptibility as early symptoms of Huntington's disease. Understanding the biological bases of these early non-motor symptoms may reveal therapeutic targets that prevent disease onset or slow disease progression, but the molecular mechanisms underlying this complex clinical presentation remain largely unknown. In the present work, we specifically examine the relationship between these psychiatric traits and Huntington's disease (HD) by identifying striatal transcriptional networks shared by HD, stress, and sleep phenotypes. First, we utilize a systems-based approach to examine a large publicly available human transcriptomic dataset for HD (GSE3790 from GEO) in a novel way. We use weighted gene coexpression network analysis and differential connectivity analyses to identify transcriptional networks dysregulated in HD, and we use an unbiased ranking scheme that leverages both gene- and network-level information to identify a novel astrocyte-specific network as most relevant to HD caudate. We validate this result in an independent HD cohort. Next, we computationally predict FOXO3 as a regulator of this network, and use multiple publicly available in vitro and in vivo experimental datasets to validate that this astrocyte HD network is downstream of a signaling pathway important in adult neurogenesis (TGFß-FOXO3). We also map this HD-relevant caudate subnetwork to striatal transcriptional networks in a large (n = 100) chronically stressed (B6xA/J)F2 mouse population that has been extensively phenotyped (328 stress- and sleep-related measurements), and we show that this striatal astrocyte network is correlated to sleep and stress traits, many of which are known to be altered in HD cohorts. We identify causal regulators of this network through Bayesian network analysis, and we highlight their relevance to motor, mood, and sleep traits through multiple in silico approaches, including an examination of their protein binding partners. Finally, we show that these causal regulators may be therapeutically viable for HD because their downstream network was partially modulated by deep brain stimulation of the subthalamic nucleus, a medical intervention thought to confer some therapeutic benefit to HD patients. In conclusion, we show that an astrocyte transcriptional network is primarily associated to HD in the caudate and provide evidence for its relationship to molecular mechanisms of neural stem cell homeostasis. Furthermore, we present a unified systems-based framework for identifying gene networks that are associated with complex non-motor traits that manifest in the earliest phases of HD. By analyzing and integrating multiple independent datasets, we identify a point of molecular convergence between sleep, stress, and HD that reflects their phenotypic comorbidity and reveals a molecular pathway involved in HD progression.


Assuntos
Astrócitos/metabolismo , Proteína Forkhead Box O3/genética , Doença de Huntington/genética , Estresse Psicológico/genética , Fator de Crescimento Transformador beta/genética , Animais , Astrócitos/patologia , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Proteína Forkhead Box O3/biossíntese , Redes Reguladoras de Genes , Humanos , Doença de Huntington/fisiopatologia , Camundongos , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Neurogênese/genética , Transdução de Sinais , Sono/genética , Estresse Psicológico/metabolismo , Transcriptoma/genética , Fator de Crescimento Transformador beta/biossíntese
15.
Infect Immun ; 86(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30061376

RESUMO

Therapy for bacteremia caused by Staphylococcus aureus is often ineffective, even when treatment conditions are optimal according to experimental protocols. Adapted subclones, such as those bearing mutations that attenuate agr-mediated virulence activation, are associated with persistent infection and patient mortality. To identify additional alterations in agr-defective mutants, we sequenced and assembled the complete genomes of clone pairs from colonizing and infected sites of several patients in whom S. aureus demonstrated a within-host loss of agr function. We report that events associated with agr inactivation result in agr-defective blood and nares strain pairs that are enriched in mutations compared to pairs from wild-type controls. The random distribution of mutations between colonizing and infecting strains from the same patient, and between strains from different patients, suggests that much of the genetic complexity of agr-defective strains results from prolonged infection or therapy-induced stress. However, in one of the agr-defective infecting strains, multiple genetic changes resulted in increased virulence in a murine model of bloodstream infection, bypassing the mutation of agr and raising the possibility that some changes were selected. Expression profiling correlated the elevated virulence of this agr-defective mutant to restored expression of the agr-regulated ESAT6-like type VII secretion system, a known virulence factor. Thus, additional mutations outside the agr locus can contribute to diversification and adaptation during infection by S. aureus agr mutants associated with poor patient outcomes.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Transativadores/genética , Animais , Bacteriemia/microbiologia , Proteínas de Bactérias/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Mutação , Filogenia , Staphylococcus aureus/classificação , Staphylococcus aureus/patogenicidade , Transativadores/metabolismo , Virulência
16.
Artigo em Inglês | MEDLINE | ID: mdl-29339387

RESUMO

Whole-genome sequencing was used to examine a persistent Enterococcus faecium bacteremia that acquired heteroresistance to three antibiotics in response to prolonged multidrug therapy. A comparison of the complete genomes before and after each change revealed the emergence of known resistance determinants for vancomycin and linezolid and suggested that a novel mutation in fabF, encoding a fatty acid synthase, was responsible for daptomycin nonsusceptibility. Plasmid recombination contributed to the progressive loss of vancomycin resistance after withdrawal of the drug.


Assuntos
Bacteriemia/microbiologia , Daptomicina/farmacologia , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/genética , Linezolida/farmacologia , Vancomicina/farmacologia , Idoso , Farmacorresistência Bacteriana Múltipla/genética , Quimioterapia Combinada , Humanos , Masculino , Testes de Sensibilidade Microbiana , Resistência a Vancomicina/genética
17.
Nature ; 485(7397): 260-3, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22504184

RESUMO

Effective targeted cancer therapeutic development depends upon distinguishing disease-associated 'driver' mutations, which have causative roles in malignancy pathogenesis, from 'passenger' mutations, which are dispensable for cancer initiation and maintenance. Translational studies of clinically active targeted therapeutics can definitively discriminate driver from passenger lesions and provide valuable insights into human cancer biology. Activating internal tandem duplication (ITD) mutations in FLT3 (FLT3-ITD) are detected in approximately 20% of acute myeloid leukaemia (AML) patients and are associated with a poor prognosis. Abundant scientific and clinical evidence, including the lack of convincing clinical activity of early FLT3 inhibitors, suggests that FLT3-ITD probably represents a passenger lesion. Here we report point mutations at three residues within the kinase domain of FLT3-ITD that confer substantial in vitro resistance to AC220 (quizartinib), an active investigational inhibitor of FLT3, KIT, PDGFRA, PDGFRB and RET; evolution of AC220-resistant substitutions at two of these amino acid positions was observed in eight of eight FLT3-ITD-positive AML patients with acquired resistance to AC220. Our findings demonstrate that FLT3-ITD can represent a driver lesion and valid therapeutic target in human AML. AC220-resistant FLT3 kinase domain mutants represent high-value targets for future FLT3 inhibitor development efforts.


Assuntos
Benzotiazóis/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Terapia de Alvo Molecular , Mutação/genética , Compostos de Fenilureia/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/genética , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Análise Mutacional de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Leucemia Mieloide Aguda/metabolismo , Modelos Moleculares , Estrutura Molecular , Compostos de Fenilureia/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína/genética , Recidiva , Reprodutibilidade dos Testes , Tirosina Quinase 3 Semelhante a fms/metabolismo
18.
BMC Med Inform Decis Mak ; 18(Suppl 3): 79, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30255805

RESUMO

BACKGROUND: Worldwide, over 14% of individuals hospitalized for psychiatric reasons have readmissions to hospitals within 30 days after discharge. Predicting patients at risk and leveraging accelerated interventions can reduce the rates of early readmission, a negative clinical outcome (i.e., a treatment failure) that affects the quality of life of patient. To implement individualized interventions, it is necessary to predict those individuals at highest risk for 30-day readmission. In this study, our aim was to conduct a data-driven investigation to find the pharmacological factors influencing 30-day all-cause, intra- and interdepartmental readmissions after an index psychiatric admission, using the compendium of prescription data (prescriptome) from electronic medical records (EMR). METHODS: The data scientists in the project received a deidentified database from the Mount Sinai Data Warehouse, which was used to perform all analyses. Data was stored in a secured MySQL database, normalized and indexed using a unique hexadecimal identifier associated with the data for psychiatric illness visits. We used Bayesian logistic regression models to evaluate the association of prescription data with 30-day readmission risk. We constructed individual models and compiled results after adjusting for covariates, including drug exposure, age, and gender. We also performed digital comorbidity survey using EMR data combined with the estimation of shared genetic architecture using genomic annotations to disease phenotypes. RESULTS: Using an automated, data-driven approach, we identified prescription medications, side effects (primary side effects), and drug-drug interaction-induced side effects (secondary side effects) associated with readmission risk in a cohort of 1275 patients using prescriptome analytics. In our study, we identified 28 drugs associated with risk for readmission among psychiatric patients. Based on prescription data, Pravastatin had the highest risk of readmission (OR = 13.10; 95% CI (2.82, 60.8)). We also identified enrichment of primary side effects (n = 4006) and secondary side effects (n = 36) induced by prescription drugs in the subset of readmitted patients (n = 89) compared to the non-readmitted subgroup (n = 1186). Digital comorbidity analyses and shared genetic analyses further reveals that cardiovascular disease and psychiatric conditions are comorbid and share functional gene modules (cardiomyopathy and anxiety disorder: shared genes (n = 37; P = 1.06815E-06)). CONCLUSIONS: Large scale prescriptome data is now available from EMRs and accessible for analytics that could improve healthcare outcomes. Such analyses could also drive hypothesis and data-driven research. In this study, we explored the utility of prescriptome data to identify factors driving readmission in a psychiatric cohort. Converging digital health data from EMRs and systems biology investigations reveal a subset of patient populations that have significant comorbidities with cardiovascular diseases are more likely to be readmitted. Further, the genetic architecture of psychiatric illness also suggests overlap with cardiovascular diseases. In summary, assessment of medications, side effects, and drug-drug interactions in a clinical setting as well as genomic information using a data mining approach could help to find factors that could help to lower readmission rates in patients with mental illness.


Assuntos
Mineração de Dados , Interações Medicamentosas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Transtornos Mentais/complicações , Transtornos Mentais/tratamento farmacológico , Readmissão do Paciente/estatística & dados numéricos , Adulto , Idoso , Teorema de Bayes , Estudos de Coortes , Data Warehousing , Bases de Dados Factuais , Registros Eletrônicos de Saúde , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Fatores de Risco , Fatores de Tempo
19.
Clin Infect Dis ; 64(7): 894-901, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362935

RESUMO

BACKGROUND: Whole-genome sequencing (WGS) is an emerging and powerful technique by which to perform epidemiological studies in outbreak situations. METHODS: WGS was used to identify and evaluate an outbreak of OXA-232-expressing carbapenem-resistant Klebsiella pneumoniae (CRKP) transmitted to 16 patients over the course of 40 weeks via endoscopic retrograde cholangiopancreatography procedures at a single institution. WGS was performed on 32 OXA-232 CRKP isolates (1-7 per patient) and single-nucleotide variants (SNVs) were analyzed, with reference to the index patient's isolate. RESULTS: Interhost genetic diversity of isolates was between 0 and 15 SNVs during the outbreak; molecular clock calculations estimated 12.31 substitutions per genome per year (95% credibility interval, 7.81-17.05). Both intra- and interpatient diversification at the plasmid and transposon level was observed, significantly impacting the antibiogram of outbreak isolates. The majority of isolates evaluated (n = 27) harbored a blaCTX-M-15 gene, but some (n = 5) lacked the transposon carrying this gene, which resulted in susceptibility to aztreonam and third- and fourth-generation cephalosporins. Similarly, an isolate from a colonized patient lacked the transposon carrying rmtF and aac(6')lb genes, resulting in susceptibility to aminoglycosides. CONCLUSIONS: This study broadens the understanding of how bacteria diversify at the genomic level over the course of a defined outbreak and provides reference for future outbreak investigations.


Assuntos
Carbapenêmicos/farmacologia , Colangiopancreatografia Retrógrada Endoscópica/efeitos adversos , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/transmissão , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , beta-Lactamases/genética , Infecção Hospitalar , Surtos de Doenças , Ativação Enzimática , Variação Genética , Genoma Bacteriano , Humanos , Klebsiella pneumoniae/classificação , Filogenia , Plasmídeos/genética , Sequenciamento Completo do Genoma , beta-Lactamases/metabolismo
20.
BMC Genomics ; 18(1): 987, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273013

RESUMO

BACKGROUND: Exosomes and other extracellular vesicles (EVs) have emerged as an important mechanism of cell-to-cell communication. However, previous studies either did not fully resolve what genetic materials were shuttled by exosomes or only focused on a specific set of miRNAs and mRNAs. A more systematic method is required to identify the genetic materials that are potentially transferred during cell-to-cell communication through EVs in an unbiased manner. RESULTS: In this work, we present a novel next generation of sequencing (NGS) based approach to identify EV mediated mRNA exchanges between co-cultured adipocyte and macrophage cells. We performed molecular and genomic profiling and jointly considered data from RNA sequencing (RNA-seq) and genotyping to track the "sequence varying mRNAs" transferred between cells. We identified 8 mRNAs being transferred from macrophages to adipocytes and 21 mRNAs being transferred in the opposite direction. These mRNAs represented biological functions including extracellular matrix, cell adhesion, glycoprotein, and signal peptides. CONCLUSIONS: Our study sheds new light on EV mediated RNA communications between adipocyte and macrophage cells, which may play a significant role in developing insulin resistance in diabetic patients. This work establishes a new method that is applicable to examining genetic material exchanges in many cellular systems and has the potential to be extended to in vivo studies as well.


Assuntos
Comunicação Celular , Vesículas Extracelulares/metabolismo , RNA Mensageiro/metabolismo , Adipócitos/metabolismo , Linhagem Celular , Técnicas de Cocultura , Expressão Gênica , Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Macrófagos/metabolismo , Transporte de RNA , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA