Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 39(41): 14688-14698, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37782843

RESUMO

To form nanopatterns with self-assembled block copolymers (BCPs), it is desirable to have through-film domains that are oriented perpendicular to the substrate. The domain orientation is determined by the interfacial interactions of the BCP domains with the substrate and with the free surface. Here, we use thin films of two different sets of BCPs with A-block-(B-random-C) architecture matched with a corresponding B-random-C copolymer nanocoating on the substrate to demonstrate two distinct wetting behaviors. The two sets of A-b-(B-r-C) BCPs are made by using thiol-epoxy click chemistry to functionalize polystyrene-block-poly(glycidyl methacrylate) with trifluoroethanethiol (TFET) and either 2-mercaptopyridine (2MP) or methyl thioglycolate (MTG). For each set of BCPs, the composition ratio of the two thiols in the BCP (φ1) is found that results in the two blocks of the modified BCP having equal surface energies (Δγair = 0). The corresponding B-r-C random copolymers were synthesized and used to modify the substrate, and the composition ratio (φ2) values that resulted in the two blocks of the BCP having equal interfacial energy with the substrate (Δγsub = 0) were determined with scanning electron microscopy. The correlation between each block's γsub value and the interaction parameter, χ, is employed to explain the different wetting behaviors of the two sets of BCPs. For the thiol pair 2MP and TFET, the values of φ1 and φ2 that lead to Δγair = 0 and Δγsub = 0, respectively, are significantly different. A similar difference was observed between the φ1 and φ2 values that lead to Δγair = 0 and Δγsub = 0 for the BCPs made with the thiol pair MTG and TFET. In the latter case, for Δγsub = 0 two windows of φ2 are identified, which can be explained by the thermodynamic interactions of the specific thiol pair and the A-b-(B-r-C) architecture.

2.
Chem Rev ; 121(15): 9450-9501, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34213328

RESUMO

The structure, chemistry, and charge of interfaces between materials and aqueous fluids play a central role in determining properties and performance of numerous water systems. Sensors, membranes, sorbents, and heterogeneous catalysts almost uniformly rely on specific interactions between their surfaces and components dissolved or suspended in the water-and often the water molecules themselves-to detect and mitigate contaminants. Deleterious processes in these systems such as fouling, scaling (inorganic deposits), and corrosion are also governed by interfacial phenomena. Despite the importance of these interfaces, much remains to be learned about their multiscale interactions. Developing a deeper understanding of the molecular- and mesoscale phenomena at water/solid interfaces will be essential to driving innovation to address grand challenges in supplying sufficient fit-for-purpose water in the future. In this Review, we examine the current state of knowledge surrounding adsorption, reactivity, and transport in several key classes of water/solid interfaces, drawing on a synergistic combination of theory, simulation, and experiments, and provide an outlook for prioritizing strategic research directions.

3.
J Phys Chem Lett ; 14(4): 920-926, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36669142

RESUMO

CO2 electrochemical reduction (CO2R) in aprotic media is a promising alternative to aqueous electrocatalysis, as it minimizes the competing hydrogen evolution reaction while enhancing CO2 solubility. To date, state-of-the-art alkali salts used as electrolytes for selective aqueous CO2R are inaccessible in aprotic systems due to the inactivation of the electrode surface from carbonate deposition. In this work, we demonstrate that an acidic nonaqueous environment enables sustained CO2 electrochemical reduction with common alkali salts in dimethyl sulfoxide. Electrochemical and spectroscopic techniques show that at low pH carbonate buildup can be prevented, allowing CO2R to proceed. Product distribution with a copper electrode revealed up to 80% Faradaic efficiency for CO2R products, including carbon monoxide, formic acid, and methane. By understanding the mechanism for electrode inactivation in an aprotic medium and addressing that challenge with dilute acid addition, we pave the way toward the development of more efficient and selective electrolytes for CO2R.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA