RESUMO
The mycobacterial F0F1-ATP synthase (ATPase) is a validated target for the development of tuberculosis (TB) therapeutics. Therefore, a series of eighteen novel compounds has been designed, synthesized and evaluated against Mycobacterium smegmatis ATPase. The observed ATPase inhibitory activities (IC50) of these compounds range between 0.36 and 5.45µM. The lead compound 9d [N-(7-chloro-2-methylquinolin-4-yl)-N-(3-((diethylamino)methyl)-4-hydroxyphenyl)-2,3-dichlorobenzenesulfonamide] with null cytotoxicity (CC50>300µg/mL) and excellent anti-mycobacterial activity and selectivity (mycobacterium ATPase IC50=0.51µM, mammalian ATPase IC50>100µM, and selectivity >200) exhibited a complete growth inhibition of replicating Mycobacterium tuberculosis H37Rv at 3.12µg/mL. In addition, it also exhibited bactericidal effect (approximately 2.4log10 reductions in CFU) in the hypoxic culture of non-replicating M. tuberculosis at 100µg/mL (32-fold of its MIC) as compared to positive control isoniazid [approximately 0.2log10 reduction in CFU at 5µg/mL (50-fold of its MIC)]. The pharmacokinetics of 9d after p.o. and IV administration in male Sprague-Dawley rats indicated its quick absorption, distribution and slow elimination. It exhibited a high volume of distribution (Vss, 0.41L/kg), moderate clearance (0.06L/h/kg), long half-life (4.2h) and low absolute bioavailability (1.72%). In the murine model system of chronic TB, 9d showed 2.12log10 reductions in CFU in both lung and spleen at 173µmol/kg dose as compared to the growth of untreated control group of Balb/C male mice infected with replicating M. tuberculosis H37Rv. The in vivo efficacy of 9d is at least double of the control drug ethambutol. These results suggest 9d as a promising candidate molecule for further preclinical evaluation against resistant TB strains.
Assuntos
Antituberculosos/química , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , ATPases Translocadoras de Prótons/antagonistas & inibidores , Quinolinas/química , Quinolinas/uso terapêutico , Tuberculose/tratamento farmacológico , Trifosfato de Adenosina , Animais , Antituberculosos/farmacocinética , Antituberculosos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Mycobacterium tuberculosis/enzimologia , Quinolinas/farmacocinética , Quinolinas/farmacologia , Ratos Sprague-Dawley , Sulfonamidas/química , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Tuberculose/microbiologiaRESUMO
Principle guided design of glycan processing enzyme inhibitors involves embedding aromatic groups onto charge and shape mimics. Intramolecular azide-alkyne cycloaddition was used as a simple and versatile strategy for the synthesis of novel condensed bicyclic triazoles from carbohydrate derived Perlin aldehydes. These newly synthesised molecules were evaluated for glycosidase inhibition against 11 commercially available enzymes and were found to possess significant affinity (micromolar range) as well as high degree of selectivity for α-glucosidases. Conformational restriction was identified as an important tool to customize the selectivity of enzyme inhibition by five-membered iminosugars.
Assuntos
Inibidores Enzimáticos/química , Inibidores de Glicosídeo Hidrolases/química , alfa-Glucosidases/química , Alcaloides/química , Química Farmacêutica/métodos , Desenho de Fármacos , Humanos , Hipoglicemiantes/química , Imino Açúcares/química , Concentração Inibidora 50 , Cinética , Conformação Molecular , Estrutura Molecular , Oryza/enzimologia , Ligação Proteica , Triazóis/químicaRESUMO
Synthesis of a library of novel trans 6-methoxy-1,1-dimethyl-2-phenyl-3-aryl-2,3-dihydro-1H-inden-4-yloxy alkyl amines and their antimycobacterial activity against drug sensitive and multidrug resistant strains of Mycobacterium tuberculosis have been reported. All the new compounds in the series exhibited MIC between 1.56 and 6.25 µg/ml. Two compounds 1i and 1j with low MIC and low cytotoxicity showed significant reduction in CFU in infected mouse macrophages at 1× MIC concentration. The compound 1i inhibited the growth of M. tuberculosis in mice at 100mg/kg dose with 1.35 log10 reduction of CFU in lungs tissue and was active against non-replicating Mycobacterium tuberculosis under anaerobic condition.
Assuntos
Aminas/síntese química , Aminas/farmacologia , Antituberculosos/síntese química , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Animais , Resistência a Múltiplos Medicamentos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade MicrobianaRESUMO
OBJECTIVES: Mycobacterium fortuitum causes opportunist non-tubercular infection in humans. Chronic infection of M. fortuitum has been clinically documented and requires prolonged chemotherapy. The objectives of this study were to characterize acute and persistent infection of M. fortuitum in a murine infection model and to screen thiophene-containing trisubstituted methanes active against both acute and persistent infection. METHODS: A murine infection model of M. fortuitum was used. Bacillary count, bioluminescence, disease symptoms, host immune response, drug susceptibility and mortality were measured. Reactivation of persistent bacilli was induced by dexamethasone. Trisubstituted methanes containing thiophene rings were synthesized and screened in vitro by agar dilution and BACTEC assay and in mice. Cytotoxicity was tested with Vero monkey kidney cells using a resazurin assay. RESULTS: The acute infection in mice was marked by a 3 log rise in viable counts, the appearance of disease symptoms and a rise in the Th1 immune response. Bacilli were susceptible to fluoroquinolones. This was followed by persistent infection, in which disappearance of disease symptoms, a decline in Th1 response and non-susceptibility to fluoroquinolones was observed. When the mice were immunocompromised on day 40 post-infection (persistent state) by dexamethasone, a rise in viable counts, symptoms and susceptibility to fluoroquinolones and a prominent Th1 response reappeared. Two lead compounds were found that cleared the mice of bacilli in acute infection and caused a 2.29-2.99 log reduction in cfu of persistent bacilli. CONCLUSIONS: The study established acute and persistent infection in mice and identified two promising anti-M. fortuitum compounds with a selectivity index >10.
Assuntos
Antibacterianos/administração & dosagem , Metano/análogos & derivados , Metano/administração & dosagem , Infecções por Mycobacterium/tratamento farmacológico , Mycobacterium fortuitum/efeitos dos fármacos , Tiofenos/administração & dosagem , Animais , Antibacterianos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Metano/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Mycobacterium/microbiologia , Infecções por Mycobacterium/patologia , Análise de Sobrevida , Tiofenos/toxicidade , Resultado do Tratamento , Células VeroRESUMO
The mycobacterial Rv3097c-encoded lipase LipY is considered as a true lipase involved in the hydrolysis of triacylglycerol stored in lipid inclusion bodies for the survival of dormant mycobacteria. To date, orlistat is the only known LipY inhibitor. In view of the important emerging role of this enzyme, a search for small-molecule inhibitors of LipY was made, leading to the identification of some new compounds (8a-8d, 8f, 8h and 8i) with potent inhibitory activities against recombinant LipY, with no cytotoxicity [50% inhibitory concentration (CC(50)) ≥ 500 µg/mL]. The compounds 6a, 8c and 8f potently inhibited (>90%) the growth of Mycobacterium tuberculosis H37Rv grown under hypoxia (oxygen-depleted condition) but had no effect on aerobically grown bacilli, suggesting that these new small molecules are highly selective towards the growth inhibition of hypoxic cultures of M. tuberculosis and hence provide new leads for combating latent tuberculosis.