Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Skin Res Technol ; 29(4): e13203, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37113095

RESUMO

BACKGROUND: The removal of hair and ruler marks is critical in handcrafted image analysis of dermoscopic skin lesions. No other dermoscopic artifacts cause more problems in segmentation and structure detection. PURPOSE: The aim of the work is to detect both white and black hair, artifacts and finally inpaint correctly the image. METHOD: We introduce a new algorithm: SharpRazor, to detect hair and ruler marks and remove them from the image. Our multiple-filter approach detects hairs of varying widths within varying backgrounds, while avoiding detection of vessels and bubbles. The proposed algorithm utilizes grayscale plane modification, hair enhancement, segmentation using tri-directional gradients, and multiple filters for hair of varying widths. We develop an alternate entropy-based processing adaptive thresholding method. White or light-colored hair, and ruler marks are detected separately and added to the final hair mask. A classifier removes noise objects. Finally, a new technique of inpainting is presented, and this is utilized to remove the detected object from the lesion image. RESULTS: The proposed algorithm is tested on two datasets, and compares with seven existing methods measuring accuracy, precision, recall, dice, and Jaccard scores. SharpRazor is shown to outperform existing methods. CONCLUSION: The Shaprazor techniques show the promise to reach the purpose of removing and inpaint both dark and white hair in a wide variety of lesions.


Assuntos
Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/patologia , Dermoscopia/métodos , Cabelo/diagnóstico por imagem , Cabelo/patologia , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
2.
J Digit Imaging ; 36(2): 526-535, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36385676

RESUMO

Hair and ruler mark structures in dermoscopic images are an obstacle preventing accurate image segmentation and detection of critical network features. Recognition and removal of hairs from images can be challenging, especially for hairs that are thin, overlapping, faded, or of similar color as skin or overlaid on a textured lesion. This paper proposes a novel deep learning (DL) technique to detect hair and ruler marks in skin lesion images. Our proposed ChimeraNet is an encoder-decoder architecture that employs pretrained EfficientNet in the encoder and squeeze-and-excitation residual (SERes) structures in the decoder. We applied this approach at multiple image sizes and evaluated it using the publicly available HAM10000 (ISIC2018 Task 3) skin lesion dataset. Our test results show that the largest image size (448 × 448) gave the highest accuracy of 98.23 and Jaccard index of 0.65 on the HAM10000 (ISIC 2018 Task 3) skin lesion dataset, exhibiting better performance than for two well-known deep learning approaches, U-Net and ResUNet-a. We found the Dice loss function to give the best results for all measures. Further evaluated on 25 additional test images, the technique yields state-of-the-art accuracy compared to 8 previously reported classical techniques. We conclude that the proposed ChimeraNet architecture may enable improved detection of fine image structures. Further application of DL techniques to detect dermoscopy structures is warranted.


Assuntos
Melanoma , Dermatopatias , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/patologia , Redes Neurais de Computação , Algoritmos , Dermoscopia/métodos , Cabelo/diagnóstico por imagem , Cabelo/patologia , Processamento de Imagem Assistida por Computador/métodos
3.
Skin Res Technol ; 25(4): 544-552, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30868667

RESUMO

PURPOSE: We present a classifier for automatically selecting a lesion border for dermoscopy skin lesion images, to aid in computer-aided diagnosis of melanoma. Variation in photographic technique of dermoscopy images makes segmentation of skin lesions a difficult problem. No single algorithm provides an acceptable lesion border to allow further processing of skin lesions. METHODS: We present a random forests border classifier model to select a lesion border from 12 segmentation algorithm borders, graded on a "good-enough" border basis. Morphology and color features inside and outside the automatic border are used to build the model. RESULTS: For a random forests classifier applied to an 802-lesion test set, the model predicts a satisfactory border in 96.38% of cases, in comparison to the best single border algorithm, which detects a satisfactory border in 85.91% of cases. CONCLUSION: The performance of the classifier-based automatic skin lesion finder is found to be better than any single algorithm used in this research.


Assuntos
Dermoscopia/métodos , Melanoma/diagnóstico por imagem , Reconhecimento Automatizado de Padrão/métodos , Neoplasias Cutâneas/diagnóstico por imagem , Algoritmos , Cor , Dermoscopia/classificação , Diagnóstico por Computador , Humanos , Aumento da Imagem , Interpretação de Imagem Assistida por Computador/instrumentação , Melanoma/patologia , Pele/patologia , Neoplasias Cutâneas/classificação , Neoplasias Cutâneas/patologia
4.
IEEE J Biomed Health Inform ; 23(4): 1385-1391, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30624234

RESUMO

This paper presents an approach that combines conventional image processing with deep learning by fusing the features from the individual techniques. We hypothesize that the two techniques, with different error profiles, are synergistic. The conventional image processing arm uses three handcrafted biologically inspired image processing modules and one clinical information module. The image processing modules detect lesion features comparable to clinical dermoscopy information-atypical pigment network, color distribution, and blood vessels. The clinical module includes information submitted to the pathologist-patient age, gender, lesion location, size, and patient history. The deep learning arm utilizes knowledge transfer via a ResNet-50 network that is repurposed to predict the probability of melanoma classification. The classification scores of each individual module from both processing arms are then ensembled utilizing logistic regression to predict an overall melanoma probability. Using cross-validated results of melanoma classification measured by area under the receiver operator characteristic curve (AUC), classification accuracy of 0.94 was obtained for the fusion technique. In comparison, the ResNet-50 deep learning based classifier alone yields an AUC of 0.87 and conventional image processing based classifier yields an AUC of 0.90. Further study of fusion of conventional image processing techniques and deep learning is warranted.


Assuntos
Dermoscopia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Melanoma/diagnóstico por imagem , Algoritmos , Área Sob a Curva , Bases de Dados Factuais , Aprendizado Profundo , Humanos , Pele/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA