Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cell ; 186(20): 4325-4344.e26, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37652010

RESUMO

KCR channelrhodopsins (K+-selective light-gated ion channels) have received attention as potential inhibitory optogenetic tools but more broadly pose a fundamental mystery regarding how their K+ selectivity is achieved. Here, we present 2.5-2.7 Å cryo-electron microscopy structures of HcKCR1 and HcKCR2 and of a structure-guided mutant with enhanced K+ selectivity. Structural, electrophysiological, computational, spectroscopic, and biochemical analyses reveal a distinctive mechanism for K+ selectivity; rather than forming the symmetrical filter of canonical K+ channels achieving both selectivity and dehydration, instead, three extracellular-vestibule residues within each monomer form a flexible asymmetric selectivity gate, while a distinct dehydration pathway extends intracellularly. Structural comparisons reveal a retinal-binding pocket that induces retinal rotation (accounting for HcKCR1/HcKCR2 spectral differences), and design of corresponding KCR variants with increased K+ selectivity (KALI-1/KALI-2) provides key advantages for optogenetic inhibition in vitro and in vivo. Thus, discovery of a mechanism for ion-channel K+ selectivity also provides a framework for next-generation optogenetics.


Assuntos
Channelrhodopsins , Rhinosporidium , Humanos , Channelrhodopsins/química , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Channelrhodopsins/ultraestrutura , Microscopia Crioeletrônica , Canais Iônicos , Potássio/metabolismo , Rhinosporidium/química
2.
Nature ; 615(7952): 535-540, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859551

RESUMO

Energy transfer from light-harvesting ketocarotenoids to the light-driven proton pump xanthorhodopsins has been previously demonstrated in two unique cases: an extreme halophilic bacterium1 and a terrestrial cyanobacterium2. Attempts to find carotenoids that bind and transfer energy to abundant rhodopsin proton pumps3 from marine photoheterotrophs have thus far failed4-6. Here we detected light energy transfer from the widespread hydroxylated carotenoids zeaxanthin and lutein to the retinal moiety of xanthorhodopsins and proteorhodopsins using functional metagenomics combined with chromophore extraction from the environment. The light-harvesting carotenoids transfer up to 42% of the harvested energy in the violet- or blue-light range to the green-light absorbing retinal chromophore. Our data suggest that these antennas may have a substantial effect on rhodopsin phototrophy in the world's lakes, seas and oceans. However, the functional implications of our findings are yet to be discovered.


Assuntos
Organismos Aquáticos , Processos Fototróficos , Bombas de Próton , Rodopsinas Microbianas , Organismos Aquáticos/metabolismo , Organismos Aquáticos/efeitos da radiação , Bactérias/metabolismo , Bactérias/efeitos da radiação , Carotenoides/metabolismo , Cor , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Processos Heterotróficos/efeitos da radiação , Luz , Oceanos e Mares , Processos Fototróficos/efeitos da radiação , Bombas de Próton/metabolismo , Bombas de Próton/efeitos da radiação , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/efeitos da radiação , Zeaxantinas/metabolismo , Zeaxantinas/efeitos da radiação , Luteína/metabolismo , Luteína/efeitos da radiação , Metagenoma , Lagos
3.
Nature ; 574(7776): 132-136, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31554965

RESUMO

Heliorhodopsins (HeRs) are a family of rhodopsins that was recently discovered using functional metagenomics1. They are widely present in bacteria, archaea, algae and algal viruses2,3. Although HeRs have seven predicted transmembrane helices and an all-trans retinal chromophore as in the type-1 (microbial) rhodopsin, they display less than 15% sequence identity with type-1 and type-2 (animal) rhodopsins. HeRs also exhibit the reverse orientation in the membrane compared with the other rhodopsins. Owing to the lack of structural information, little is known about the overall fold and the photoactivation mechanism of HeRs. Here we present the 2.4-Å-resolution structure of HeR from an uncultured Thermoplasmatales archaeon SG8-52-1 (GenBank sequence ID LSSD01000000). Structural and biophysical analyses reveal the similarities and differences between HeRs and type-1 microbial rhodopsins. The overall fold of HeR is similar to that of bacteriorhodopsin. A linear hydrophobic pocket in HeR accommodates a retinal configuration and isomerization as in the type-1 rhodopsin, although most of the residues constituting the pocket are divergent. Hydrophobic residues fill the space in the extracellular half of HeR, preventing the permeation of protons and ions. The structure reveals an unexpected lateral fenestration above the ß-ionone ring of the retinal chromophore, which has a critical role in capturing retinal from environment sources. Our study increases the understanding of the functions of HeRs, and the structural similarity and diversity among the microbial rhodopsins.


Assuntos
Rodopsinas Microbianas/química , Thermoplasmales/química , Bacteriorodopsinas/química , Sítios de Ligação , Cristalografia por Raios X , Microscopia de Força Atômica , Modelos Moleculares , Dobramento de Proteína , Multimerização Proteica , Retinaldeído/química , Rodopsinas Microbianas/ultraestrutura
4.
Biochemistry ; 63(7): 843-854, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38458614

RESUMO

Ligand-triggered activation of G protein-coupled receptors (GPCRs) relies on the phenomenon of loose allosteric coupling, which involves conformational alterations spanning from the extracellular ligand-binding domain to the cytoplasmic region, where interactions with G proteins occur. During the GPCR activation process, several intermediate and equilibrium states orchestrate the movement of the flexible and rigid transmembrane (TM) segments of the GPCR. Monitoring early conformational changes is important in unraveling the structural intricacies of the loose allosteric coupling. Here, we focus on the lumi intermediate formed by thermal relaxation from the initial photointermediate, batho in primate green cone pigment (MG), a light-sensitive GPCR responsible for color vision. Our findings from light-induced Fourier transform infrared difference spectroscopy reveal its similarity with rhodopsin, which mediates twilight vision, specifically involving the flip motion of the ß-ionone ring, the relaxation of the torsional structure of the retinal, and local perturbations in the α-helix upon lumi intermediate formation. Conversely, we observe a hydrogen bond modification specific to MG's protonated carboxylic acid, identifying its origin as Glu1022.53 situated in TM2. The weakening of the hydrogen bond strength at Glu1022.53 during the transition from the batho to the lumi intermediates corresponds to a slight outward movement of TM2. Additionally, within the X-ray crystal structure of the rhodopsin lumi intermediate, we note the relocation of the Met862.53 side chain in TM2, expanding the volume of the retinal binding pocket. Consequently, the position of 2.53 emerges as the early step in the conformational shift toward light-induced activation. Moreover, given the prevalence of IR-insensitive hydrophobic amino acids at position 2.53 in many rhodopsin-like GPCRs, including rhodopsin, the hydrogen bond alteration in the C═O stretching band at Glu1022.53 of MG can be used as a probe for tracing conformational changes during the GPCR activation process.


Assuntos
Receptores Acoplados a Proteínas G , Rodopsina , Animais , Rodopsina/química , Ligantes , Espectroscopia de Infravermelho com Transformada de Fourier
5.
J Biol Chem ; 299(6): 104726, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37094700

RESUMO

The position of the counterion in animal rhodopsins plays a crucial role in maintaining visible light sensitivity and facilitating the photoisomerization of their retinal chromophore. The counterion displacement is thought to be closely related to the evolution of rhodopsins, with different positions found in invertebrates and vertebrates. Interestingly, box jellyfish rhodopsin (JelRh) acquired the counterion in transmembrane 2 independently. This is a unique feature, as in most animal rhodopsins, the counterion is found in a different location. In this study, we used Fourier Transform Infrared spectroscopy to examine the structural changes that occur in the early photointermediate state of JelRh. We aimed to determine whether the photochemistry of JelRh is similar to that of other animal rhodopsins by comparing its spectra to those of vertebrate bovine rhodopsin (BovRh) and invertebrate squid rhodopsin (SquRh). We observed that the N-D stretching band of the retinal Schiff base was similar to that of BovRh, indicating the interaction between the Schiff base and the counterion is similar in both rhodopsins, despite their different counterion positions. Furthermore, we found that the chemical structure of the retinal in JelRh is similar to that in BovRh, including the changes in the hydrogen-out-of-plane band that indicates a retinal distortion. Overall, the protein conformational changes induced by the photoisomerization of JelRh yielded spectra that resemble an intermediate between BovRh and SquRh, suggesting a unique spectral property of JelRh, and making it the only animal rhodopsin with a counterion in TM2 and an ability to activate Gs protein.


Assuntos
Rodopsina , Bases de Schiff , Animais , Bovinos , Fotoquímica , Rodopsina/química , Bases de Schiff/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cubomedusas
6.
Biochemistry ; 62(8): 1347-1359, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37001008

RESUMO

Animal visual rhodopsins can be classified into monostable and bistable rhodopsins, which are typically found in vertebrates and invertebrates, respectively. The former example is bovine rhodopsin (BovRh), whose structures and functions have been extensively studied. On the other hand, those of bistable rhodopsins are less known, despite their importance in optogenetics. Here, low-temperature Fourier-transform infrared (FTIR) spectroscopy was applied to jumping spider rhodopsin-1 (SpiRh1) at 77 K, and the obtained light-induced spectral changes were compared with those of squid rhodopsin (SquRh) and BovRh. Although chromophore distortion of the resting state monitored by HOOP vibrations is not distinctive between invertebrate and vertebrate rhodopsins, distortion of the all-trans chromophore after photoisomerization is unique for BovRh, and the distortion was localized at the center of the chromophore in SpiRh1 and SquRh. Highly conserved aspartate (D83 in BovRh) does not change the hydrogen-bonding environment in invertebrate rhodopsins. Thus, present FTIR analysis provides specific structural changes, leading to activation of invertebrate and vertebrate rhodopsins. On the other hand, the analysis of O-D stretching vibrations in D2O revealed unique features of protein-bound water molecules. Numbers of water bands in SpiRh1 and SquRh were less and more than those in BovRh. The X-ray crystal structure of SpiRh1 observed a bridged water molecule between the protonated Schiff base and its counterion (E194), but strongly hydrogen-bonded water molecules were never detected in SpiRh1, as well as SquRh and BovRh. Thus, absence of strongly hydrogen-bonded water molecules is substantial for animal rhodopsins, which is distinctive from microbial rhodopsins.


Assuntos
Rodopsina , Rodopsinas Microbianas , Animais , Bovinos , Rodopsina/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água/química , Hidrogênio , Bases de Schiff/química
7.
Phys Chem Chem Phys ; 25(4): 3535-3543, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36637167

RESUMO

Heliorhodopsins (HeRs), a recently discovered family of rhodopsins, have an inverted membrane topology compared to animal and microbial rhodopsins. The slow photocycle of HeRs suggests a light-sensor function, although the actual function remains unknown. Although HeRs exhibit no specific binding of monovalent cations or anions, recent ATR-FTIR spectroscopy studies have demonstrated the binding of Zn2+ to HeR from Thermoplasmatales archaeon (TaHeR) and 48C12. Even though ion-specific FTIR spectra were observed for many divalent cations, only helical structural perturbations were observed for Zn2+-binding, suggesting a possible modification of the HeR function by Zn2+. The present study shows that Zn2+-binding lowers the thermal stability of TaHeR, and slows back proton transfer to the retinal Schiff base (M decay) during its photocycle. Zn2+-binding was similarly observed for a TaHeR opsin that lacks the retinal chromophore. We then studied the Zn2+-binding site by means of the ATR-FTIR spectroscopy of site-directed mutants. Among five and four mutants of His and Asp/Glu, respectively, only E150Q exhibited a completely different spectral feature of the α-helix (amide-I) in ATR-FTIR spectroscopy, suggesting that E150 is responsible for Zn2+-binding. Molecular dynamics (MD) simulations built a coordination structure of Zn2+-bound TaHeR, where E150 and protein bound water molecules participate in direct coordination. It was concluded that the specific binding site of Zn2+ is located at the cytoplasmic side of TaHeR, and that Zn2+-binding affects the structure and structural dynamics, possibly modifying the unknown function of TaHeR.


Assuntos
Prótons , Rodopsinas Microbianas , Rodopsinas Microbianas/química , Sítios de Ligação , Zinco
8.
Biochemistry ; 61(23): 2698-2708, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399519

RESUMO

The proton transfer reaction belongs to one of the key triggers for the functional expression of membrane proteins. Rod and cone opsins are light-sensitive G-protein-coupled receptors (GPCRs) that undergo the cis-trans isomerization of the retinal chromophore in response to light. The isomerization event initiates a conformational change in the opsin protein moiety, which propagates the downstream effector signaling. The final step of receptor activation is the deprotonation of the retinal Schiff base, a proton transfer reaction which has been believed to be identical among the cone opsins. Here, we report an unexpected proton transfer reaction occurring in the early photoreaction process of primate blue-sensitive pigment (MB). By using low-temperature UV-visible spectroscopy, we found that the Lumi intermediate of MB formed in transition from the BL intermediate shows an absorption maximum in the UV region, indicating the deprotonation of the retinal Schiff base. Comparison of the light-induced difference FTIR spectra of Batho, BL, and Lumi showed significant α-helical backbone C=O stretching and protonated carboxylate C=O stretching vibrations only in the Lumi intermediate. The transition from BL to Lumi thus involves dramatic changes in protein environment with a proton transfer reaction between the Schiff base and the counterion resulting in an absorption maximum in the UV region.


Assuntos
Opsinas dos Cones , Pigmentos da Retina , Animais , Pigmentos da Retina/química , Prótons , Bases de Schiff/química , Primatas/metabolismo , Retinaldeído/química , Rodopsina/química
9.
Biochemistry ; 60(12): 899-907, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33721993

RESUMO

In many rhodopsins, the retinal Schiff base pKa remains very high, ensuring Schiff base protonation captures visible light. Nevertheless, recently we found that TAT rhodopsin contains protonated and unprotonated forms at physiological pH. The protonated form displays a unique photochemical behavior in which the primary K intermediate returns to the original state within 10-5 s, and the lack of photocycle completion poses questions about the functional role of TAT rhodopsin. Here we studied the molecular properties of the protonated and unprotonated forms of the Schiff base in TAT rhodopsin. We confirmed no photointermediate formation at >10-5 s for the protonated form of TAT rhodopsin in microenvironments such as detergents, nanodiscs, and liposomes. In contrast, the unprotonated form features a very long photocycle with a time constant of 15 s. A low-temperature study revealed that the primary reaction of the unprotonated form is all-trans to 13-cis photoisomerization, which is usual, but with a proton transfer reaction occurring at 77 K, which is unusual. The active intermediate contains the unprotonated Schiff base as well as the resting state. Electrophysiological measurements excluded ion-transport activity for TAT rhodopsin, while transient outward proton movement only at an alkaline extracellular pH indicates that TAT rhodopsin senses the extracellular pH. On the basis of the findings presented here, we propose that TAT rhodopsin is an ultraviolet (UV)-dependent environmental pH sensor in marine bacteria. At acidic pH, absorbed visible light energy is quickly dissipated into heat without any function. In contrast, when the environmental pH becomes high, absorption of UV/blue light yields formation of the long-lived intermediates, possibly driving the signal transduction cascade in marine bacteria.


Assuntos
Rodopsina/metabolismo , Temperatura , Raios Ultravioleta , Concentração de Íons de Hidrogênio
10.
Biochemistry ; 59(28): 2602-2607, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32567852

RESUMO

The visual pigments of humans contain 11-cis retinal as the chromophore of light perception, and its photoisomerization to the all-trans form initiates visual excitation in our eyes. It is well-known that three isomeric states of retinal (11-cis, all-trans, and 9-cis) are in photoequilibrium at very low temperatures such as 77 K. Here we report the lack of formation of the 9-cis form in monkey blue (MB) at 77 K, as revealed by light-induced difference Fourier transform infrared spectroscopy. This indicates that the chromophore binding pocket of MB does not accommodate the 9-cis form, even though it accommodates the all-trans form by twisting the chromophore. Mutation of the blue-specific tyrosine at position 265 to tryptophan, which is highly conserved in other animal rhodopsins, led to formation of the 9-cis form in MB, suggesting that Y265 is one of the determinants of the unique photochemistry in blue pigments. We also found that 9-cis retinal does not bind to MB opsin, implying that the chromophore binding pocket does not accommodate the 9-cis form at physiological temperature. The unique property of MB is discussed on the basis of the results presented here.


Assuntos
Diterpenos/química , Retinaldeído/química , Opsinas de Bastonetes/química , Animais , Sítios de Ligação , Bovinos , Células HEK293 , Haplorrinos , Humanos , Isomerismo , Modelos Moleculares , Pigmentos da Retina/química , Rodopsina/química
11.
J Biol Chem ; 294(15): 6082-6093, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30770468

RESUMO

The variable composition of the chromophore-binding pocket in visual receptors is essential for vision. The visual phototransduction starts with the cis-trans isomerization of the retinal chromophore upon absorption of photons. Despite sharing the common 11-cis-retinal chromophore, rod and cone photoreceptors possess distinct photochemical properties. Thus, a detailed molecular characterization of the chromophore-binding pocket of these receptors is critical to understanding the differences in the photochemistry of vision between rods and cones. Unlike for rhodopsin (Rh), the crystal structures of cone opsins remain to be determined. To obtain insights into the specific chromophore-protein interactions that govern spectral tuning in human visual pigments, here we harnessed the unique binding properties of 11-cis-6-membered-ring-retinal (11-cis-6mr-retinal) with human blue, green, and red cone opsins. To unravel the specificity of the chromophore-binding pocket of cone opsins, we applied 11-cis-6mr-retinal analog-binding analyses to human blue, green, and red cone opsins. Our results revealed that among the three cone opsins, only blue cone opsin can accommodate the 11-cis-6mr-retinal in its chromophore-binding pocket, resulting in the formation of a synthetic blue pigment (B6mr) that absorbs visible light. A combination of primary sequence alignment, molecular modeling, and mutagenesis experiments revealed the specific amino acid residue 6.48 (Tyr-262 in blue cone opsins and Trp-281 in green and red cone opsins) as a selectivity filter in human cone opsins. Altogether, the results of our study uncover the molecular basis underlying the binding selectivity of 11-cis-6mr-retinal to the cone opsins.


Assuntos
Opsinas dos Cones/química , Modelos Moleculares , Retinaldeído/química , Opsinas dos Cones/genética , Opsinas dos Cones/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Retinaldeído/metabolismo
12.
Proc Natl Acad Sci U S A ; 114(13): E2608-E2615, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28289214

RESUMO

Vertebrate rhodopsin (Rh) contains 11-cis-retinal as a chromophore to convert light energy into visual signals. On absorption of light, 11-cis-retinal is isomerized to all-trans-retinal, constituting a one-way reaction that activates transducin (Gt) followed by chromophore release. Here we report that bovine Rh, regenerated instead with a six-carbon-ring retinal chromophore featuring a C11=C12 double bond locked in its cis conformation (Rh6mr), employs an atypical isomerization mechanism by converting 11-cis to an 11,13-dicis configuration for prolonged Gt activation. Time-dependent UV-vis spectroscopy, HPLC, and molecular mechanics analyses revealed an atypical thermal reisomerization of the 11,13-dicis to the 11-cis configuration on a slow timescale, which enables Rh6mr to function in a photocyclic manner similar to that of microbial Rhs. With this photocyclic behavior, Rh6mr repeatedly recruits and activates Gt in response to light stimuli, making it an excellent candidate for optogenetic tools based on retinal analog-bound vertebrate Rhs. Overall, these comprehensive structure-function studies unveil a unique photocyclic mechanism of Rh activation by an 11-cis-to-11,13-dicis isomerization.


Assuntos
Rodopsina/química , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Isomerismo , Processos Fotoquímicos , Rodopsina/fisiologia , Rodopsina/efeitos da radiação
13.
Biochemistry ; 58(26): 2944-2952, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31144811

RESUMO

Visual pigments of the long-wavelength sensitive opsin group (L group) are anion sensitive in nature. Their highly conserved amino acid residues, H197 and K200, exclusively interact with a chloride ion (Cl-) in the chromophore-binding pocket. Substitution of H197 completely abolishes Cl- binding and results in an ∼30 nm spectral blue-shift. Recent attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy studies of monkey green sensitive pigment have provided insights into the role of Cl- binding in stabilizing the antiparallel ß-sheet at extracellular loop 2 (ECL2). In addition to maintaining the dark state of L opsins, Cl- binding is also believed to play a crucial role in spectral tuning. Here, we used a combination of site-directed mutagenesis in combination with UV-visible spectroscopy to show that Q1142.65 that is positioned far from ECL2 is also a crucial residue for the Cl- effect in L opsins. Comprehensive FTIR spectroscopic analyses on both ion-binding-induced and light-induced structural changes revealed that Q1142.65 contributes to the stability of ß-sheet structure indirectly even though Q1142.65 is not located in ECL2. Overall, these structure-function studies are important for understanding the functional role of Cl- binding in L opsins.


Assuntos
Opsinas de Bastonetes/química , Animais , Linhagem Celular , Cloretos/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Insetos , Luz , Modelos Moleculares , Conformação Proteica , Conformação Proteica em Folha beta , Estabilidade Proteica , Opsinas de Bastonetes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Phys Chem Chem Phys ; 21(42): 23663-23671, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31626269

RESUMO

Heliorhodopsin (HeR), a recently discovered new rhodopsin family, contains a single counterion, E107, which is specific to HeR 48C12. In this paper, we examined possible anion binding into the wild-type (WT) and E107 mutants of HeR 48C12. We prepared E107A, E107Q, and E107D, and chloride binding was tested by measuring absorption spectra using UV-visible spectroscopy under various anionic conditions. The experimental results clearly showed no anion binding to WT and E107D, where E107 and D107 acted as the Schiff base counterion, respectively. On the other hand, anion binding was observed to the Schiff base region in E107A and E107Q. In the case of E107A, λmax was 553, 559, 565, and 549 nm for Cl-, Br-, I-, and NO3-, respectively. Similar halide-size dependence on the absorption spectra of the chromophore in solution strongly suggests that the anion acted as the direct hydrogen-bonding acceptor of the protonated Schiff base in E107A. In the case of E107Q, λmax was 577, 578, 579, and 581 nm for Cl-, Br-, I-, and NO3-, respectively. Based on the small halide dependence, we interpreted the C[double bond, length as m-dash]O group of the Q107 side chain as the hydrogen-bonding acceptor. Moreover, the anion stabilized the protonated state without a direct hydrogen bond with the Schiff base. Structures around the Schiff base region are discussed for the WT and E107 mutants of HeR 48C12.

15.
J Biol Chem ; 292(26): 10983-10997, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28487362

RESUMO

Phototransduction is initiated when the absorption of light converts the 11-cis-retinal chromophore to its all-trans configuration in both rod and cone vertebrate photoreceptors. To sustain vision, 11-cis-retinal is continuously regenerated from its all-trans conformation through a series of enzymatic steps comprising the "visual or retinoid" cycle. Abnormalities in this cycle can compromise vision because of the diminished supply of 11-cis-retinal and the accumulation of toxic, constitutively active opsin. As shown previously for rod cells, attenuation of constitutively active opsin can be achieved with the unbleachable analogue, 11-cis-6-membered ring (11-cis-6mr)-retinal, which has therapeutic effects against certain degenerative retinal diseases. However, to discern the molecular mechanisms responsible for this action, pigment regeneration with this locked retinal analogue requires delineation also in cone cells. Here, we compared the regenerative properties of rod and green cone opsins with 11-cis-6mr-retinal and demonstrated that this retinal analogue could regenerate rod pigment but not green cone pigment. Based on structural modeling suggesting that Pro-205 in green cone opsin could prevent entry and binding of 11-cis-6mr-retinal, we initially mutated this residue to Ile, the corresponding residue in rhodopsin. However, this substitution did not enable green cone opsin to regenerate with 11-cis-6mr-retinal. Interestingly, deletion of 16 N-terminal amino acids in green cone opsin partially restored the binding of 11-cis-6mr-retinal. These results and our structural modeling indicate that a more complex binding pathway determines the regeneration of mammalian green cone opsin with chromophore analogues such as 11-cis-6mr-retinal.


Assuntos
Modelos Moleculares , Opsinas/química , Retinaldeído/química , Animais , Humanos , Opsinas/genética , Opsinas/metabolismo , Retinaldeído/genética , Retinaldeído/metabolismo , Células Sf9 , Spodoptera
16.
Phys Chem Chem Phys ; 20(5): 3381-3387, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29297909

RESUMO

Long-wavelength-sensitive (LWS) pigment possesses a chloride binding site in its protein moiety. The binding of chloride alters the absorption spectra of LWS; this is known as the chloride effect. Although the two amino acid substitutions of His197 and Lys200 influence the chloride effect, the molecular mechanism of chloride binding, which underlies the spectral tuning, has yet to be clarified. In this study, we applied ATR-FTIR spectroscopy to monkey green (MG) pigment to gain structural information of the chloride binding site. The results suggest that chloride binding stabilizes the ß-sheet structure on the extracellular side loop with perturbation of the retinal polyene chain, promotes a hydrogen bonding exchange with the hydroxyl group of Tyr, and alters the protonation state of carboxylate. Combining with the results of the binding analyses of various anions (Br-, I- and NO3-), our findings suggest that the anion binding pocket is organized for only Cl- (or Br-) to stabilize conformation around the retinal chromophore, which is functionally relevant with absorbing long wavelength light.


Assuntos
Cloretos/química , Pigmentos da Retina/química , Animais , Ânions/química , Sítios de Ligação , Cloretos/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Ligação de Hidrogênio , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Pigmentos da Retina/genética , Pigmentos da Retina/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Biochim Biophys Acta Bioenerg ; 1865(4): 149148, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906314

RESUMO

Channelrhodopsins (CRs) are used as key tools in optogenetics, and novel CRs, either found from nature or engineered by mutation, have greatly contributed to the development of optogenetics. Recently CRs were discovered from viruses, and crystal structure of a viral CR, OLPVR1, reported a very similar water-containing hydrogen-bonding network near the retinal Schiff base to that of a light-driven proton-pump bacteriorhodopsin (BR). In both OLPVR1 and BR, nearly planar pentagonal cluster structures are comprised of five oxygen atoms, three oxygens from water molecules and two oxygens from the Schiff base counterions. The planar pentagonal cluster stabilizes a quadrupole, two positive charges at the Schiff base and an arginine, and two negative charges at the counterions, and thus plays important roles in light-gated channel function of OLPVR1 and light-driven proton pump function of BR. Despite similar pentagonal cluster structures, present FTIR analysis revealed different hydrogen-bonding networks between OLPVR1 and BR. The hydrogen bond between the protonated Schiff base and a water is stronger in OLPVR1 than in BR, and internal water molecules donate hydrogen bonds much weaker in OLPVR1 than in BR. In OLPVR1, the bridged water molecule between the Schiff base and counterions forms hydrogen bonds to D76 and D200 equally, while the hydrogen-bonding interaction is much stronger to D85 than to D212 in BR. The present interpretation is supported by the mutation results, where D76 and D200 equally work as the Schiff base counterions in OLPVR1, but D85 is the primary counterion in BR. This work reports highly sensitive hydrogen-bonding network in the Schiff base region, which would be closely related to each function through light-induced alterations of the network.

18.
J Mol Biol ; 436(5): 168273, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37709010

RESUMO

Heliorhodopsin (HeR), a recently discovered new rhodopsin family, contains a single counterion of the protonated Schiff base, E108 in HeR from Thermoplasmatales archaeon SG8-52-1 (TaHeR). Upon light absorption, the M and O intermediates form in HeRs, as well as type-1 microbial rhodopsins, indicating that the proton transfer from the Schiff base leads to the activation of HeRs. The present flash photolysis study of TaHeR in the presence of a pH-sensitive dye showed that TaHeR contains a proton-accepting group (PAG) inside protein. Comprehensive mutation study of TaHeR found the E108D mutant abolishing the M formation, which is not only at pH 8, but also at pH 9 and 10. The lack of M observation does not originate from the short lifetime of the M intermediate in E108D, as FTIR spectroscopy revealed that a red-shifted K-like intermediate is long lived in E108D. It is likely that the K-like intermediate returns to the unphotolyzed state without internal proton transfer in E108D. E108 and D108 are the Schiff base counterions of the wild-type and E108D mutant TaHeR, respectively, whereas small difference in length of side chains determine internal proton transfer reaction from the Schiff base. Based on the present finding, we propose that the internal water cluster (four water molecules) constitutes PAG in the M intermediate of TaHeR. In the wild type TaHeR, a protonated water cluster is stabilized by forming a salt bridge with E108. In contrast, slightly shortened counterion (D108) cannot stabilize the protonated water cluster in E108D, and thus impairs internal proton transfer from the Schiff base.


Assuntos
Prótons , Rodopsinas Microbianas , Thermoplasmales , Concentração de Íons de Hidrogênio , Rodopsinas Microbianas/química , Rodopsinas Microbianas/genética , Bases de Schiff/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Thermoplasmales/genética , Thermoplasmales/metabolismo , Mutação , Cristalografia por Raios X , Conformação Proteica
19.
Biophys Physicobiol ; 20(Supplemental): e201017, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38362323

RESUMO

TAT rhodopsin extracted from the marine bacterium SAR11 HIMB114 has a characteristic Thr-Ala-Thr motif and contains both protonated and deprotonated states of Schiff base at physiological pH conditions due to the low pKa. Here, using solid-state NMR spectroscopy, we investigated the 13C and 15N NMR signals of retinal in only the protonated state of TAT in the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho (1'-rac-glycerol) (POPE/POPG) membrane at weakly acidic conditions. In the 13C NMR spectrum of 13C retinal-labeled TAT rhodopsin, the isolated 14-13C signals of 13-trans/15-anti and 13-cis/15-syn isomers were observed at a ratio of 7:3. 15N retinal protonated Schiff base (RPSB) had a significantly higher magnetic field resonance at 160 ppm. In 15N RPSB/λmax analysis, the plot of TAT largely deviated from the trend based on the retinylidene-halide model compounds and microbial rhodopsins. Our findings indicate that the RPSB of TAT forms a very weak interaction with the counterion.

20.
J Phys Chem Lett ; 14(7): 1784-1793, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36762971

RESUMO

The visual pigments of the cones perceive red, green, and blue colors. The monkey green (MG) pigment possesses a unique Cl- binding site; however, its relationship to the spectral tuning in green pigments remains elusive. Recently, FTIR spectroscopy revealed the characteristic structural modifications of the retinal binding site by Cl- binding. Herein, we report the computational structural modeling of MG pigments and quantum-chemical simulation to investigate its spectral redshift and physicochemical relevance when Cl- is present. Our protein structures reflect the previously suggested structural changes. AlphaFold2 failed to predict these structural changes. Excited-state calculations successfully reproduced the experimental red-shifted absorption energies, corroborating our protein structures. Electrostatic energy decomposition revealed that the redshift results from the His197 protonation state and conformations of Glu129, Ser202, and Ala308; however, Cl- itself contributes to the blueshift. Site-directed mutagenesis supported our analysis. These modeled structures may provide a valuable foundation for studying cone pigments.


Assuntos
Cloretos , Pigmentos da Retina , Pigmentos da Retina/química , Pigmentos da Retina/metabolismo , Cloretos/química , Retina , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA