Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(16): 3041-3055.e25, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35917817

RESUMO

Rare copy-number variants (rCNVs) include deletions and duplications that occur infrequently in the global human population and can confer substantial risk for disease. In this study, we aimed to quantify the properties of haploinsufficiency (i.e., deletion intolerance) and triplosensitivity (i.e., duplication intolerance) throughout the human genome. We harmonized and meta-analyzed rCNVs from nearly one million individuals to construct a genome-wide catalog of dosage sensitivity across 54 disorders, which defined 163 dosage sensitive segments associated with at least one disorder. These segments were typically gene dense and often harbored dominant dosage sensitive driver genes, which we were able to prioritize using statistical fine-mapping. Finally, we designed an ensemble machine-learning model to predict probabilities of dosage sensitivity (pHaplo & pTriplo) for all autosomal genes, which identified 2,987 haploinsufficient and 1,559 triplosensitive genes, including 648 that were uniquely triplosensitive. This dosage sensitivity resource will provide broad utility for human disease research and clinical genetics.


Assuntos
Variações do Número de Cópias de DNA , Genoma Humano , Variações do Número de Cópias de DNA/genética , Dosagem de Genes , Haploinsuficiência/genética , Humanos
2.
Cell ; 158(2): 263-276, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24998929

RESUMO

Autism spectrum disorder (ASD) is a heterogeneous disease in which efforts to define subtypes behaviorally have met with limited success. Hypothesizing that genetically based subtype identification may prove more productive, we resequenced the ASD-associated gene CHD8 in 3,730 children with developmental delay or ASD. We identified a total of 15 independent mutations; no truncating events were identified in 8,792 controls, including 2,289 unaffected siblings. In addition to a high likelihood of an ASD diagnosis among patients bearing CHD8 mutations, characteristics enriched in this group included macrocephaly, distinct faces, and gastrointestinal complaints. chd8 disruption in zebrafish recapitulates features of the human phenotype, including increased head size as a result of expansion of the forebrain/midbrain and impairment of gastrointestinal motility due to a reduction in postmitotic enteric neurons. Our findings indicate that CHD8 disruptions define a distinct ASD subtype and reveal unexpected comorbidities between brain development and enteric innervation.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Adolescente , Sequência de Aminoácidos , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Criança , Transtornos Globais do Desenvolvimento Infantil/classificação , Transtornos Globais do Desenvolvimento Infantil/patologia , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Feminino , Trato Gastrointestinal/inervação , Trato Gastrointestinal/fisiopatologia , Humanos , Macaca mulatta , Masculino , Megalencefalia/patologia , Dados de Sequência Molecular , Mutação , Alinhamento de Sequência , Fatores de Transcrição/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Hum Genomics ; 18(1): 93, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218908

RESUMO

BACKGROUND: Polygenic risk scores (PRS) derived from European individuals have reduced portability across global populations, limiting their clinical implementation at worldwide scale. Here, we investigate the performance of a wide range of PRS models across four ancestry groups (Africans, Europeans, East Asians, and South Asians) for 14 conditions of high-medical interest. METHODS: To select the best-performing model per trait, we first compared PRS performances for publicly available scores, and constructed new models using different methods (LDpred2, PRS-CSx and SNPnet). We used 285 K European individuals from the UK Biobank (UKBB) for training and 18 K, including diverse ancestries, for testing. We then evaluated PRS portability for the best models in Europeans and compared their accuracies with respect to the best PRS per ancestry. Finally, we validated the selected PRS models using an independent set of 8,417 individuals from Biobank of the Americas-Genomelink (BbofA-GL); and performed a PRS-Phewas. RESULTS: We confirmed a decay in PRS performances relative to Europeans when the evaluation was conducted using the best-PRS model for Europeans (51.3% for South Asians, 46.6% for East Asians and 39.4% for Africans). We observed an improvement in the PRS performances when specifically selecting ancestry specific PRS models (phenotype variance increase: 1.62 for Africans, 1.40 for South Asians and 0.96 for East Asians). Additionally, when we selected the optimal model conditional on ancestry for CAD, HDL-C and LDL-C, hypertension, hypothyroidism and T2D, PRS performance for studied populations was more comparable to what was observed in Europeans. Finally, we were able to independently validate tested models for Europeans, and conducted a PRS-Phewas, identifying cross-trait interplay between cardiometabolic conditions, and between immune-mediated components. CONCLUSION: Our work comprehensively evaluated PRS accuracy across a wide range of phenotypes, reducing the uncertainty with respect to which PRS model to choose and in which ancestry group. This evaluation has let us identify specific conditions where implementing risk-prioritization strategies could have practical utility across diverse ancestral groups, contributing to democratizing the implementation of PRS.


Assuntos
Predisposição Genética para Doença , Estratificação de Risco Genético , Feminino , Humanos , Povo Asiático/genética , Estudo de Associação Genômica Ampla , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , População Branca/genética , População Negra/genética
4.
Am J Hum Genet ; 108(5): 929-941, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811806

RESUMO

Proteins involved in transcriptional regulation harbor a demonstrated enrichment of mutations in neurodevelopmental disorders. The Sin3 (Swi-independent 3)/histone deacetylase (HDAC) complex plays a central role in histone deacetylation and transcriptional repression. Among the two vertebrate paralogs encoding the Sin3 complex, SIN3A variants cause syndromic intellectual disability, but the clinical consequences of SIN3B haploinsufficiency in humans are uncharacterized. Here, we describe a syndrome hallmarked by intellectual disability, developmental delay, and dysmorphic facial features with variably penetrant autism spectrum disorder, congenital malformations, corpus callosum defects, and impaired growth caused by disruptive SIN3B variants. Using chromosomal microarray or exome sequencing, and through international data sharing efforts, we identified nine individuals with heterozygous SIN3B deletion or single-nucleotide variants. Five individuals harbor heterozygous deletions encompassing SIN3B that reside within a ∼230 kb minimal region of overlap on 19p13.11, two individuals have a rare nonsynonymous substitution, and two individuals have a single-nucleotide deletion that results in a frameshift and predicted premature termination codon. To test the relevance of SIN3B impairment to measurable aspects of the human phenotype, we disrupted the orthologous zebrafish locus by genome editing and transient suppression. The mutant and morphant larvae display altered craniofacial patterning, commissural axon defects, and reduced body length supportive of an essential role for Sin3 function in growth and patterning of anterior structures. To investigate further the molecular consequences of SIN3B variants, we quantified genome-wide enhancer and promoter activity states by using H3K27ac ChIP-seq. We show that, similar to SIN3A mutations, SIN3B disruption causes hyperacetylation of a subset of enhancers and promoters in peripheral blood mononuclear cells. Together, these data demonstrate that SIN3B haploinsufficiency leads to a hitherto unknown intellectual disability/autism syndrome, uncover a crucial role of SIN3B in the central nervous system, and define the epigenetic landscape associated with Sin3 complex impairment.


Assuntos
Transtorno do Espectro Autista/genética , Haploinsuficiência/genética , Histona Desacetilases/metabolismo , Deficiência Intelectual/genética , Proteínas Repressoras/genética , Acetilação , Adolescente , Animais , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Feminino , Histonas/química , Histonas/metabolismo , Humanos , Lactente , Larva/genética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutação , Proteínas Repressoras/deficiência , Proteínas Repressoras/metabolismo , Síndrome , Adulto Jovem , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
5.
Annu Rev Neurosci ; 39: 409-35, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27145913

RESUMO

Studies of syndromic hydrocephalus have led to the identification of >100 causative genes. Even though this work has illuminated numerous pathways associated with hydrocephalus, it has also highlighted the fact that the genetics underlying this phenotype are more complex than anticipated originally. Mendelian forms of hydrocephalus account for a small fraction of the genetic burden, with clear evidence of background-dependent effects of alleles on penetrance and expressivity of driver mutations in key developmental and homeostatic pathways. Here, we synthesize the currently implicated genes and inheritance paradigms underlying hydrocephalus, grouping causal loci into functional modules that affect discrete, albeit partially overlapping, cellular processes. These in turn have the potential to both inform pathomechanism and assist in the rational molecular classification of a clinically heterogeneous phenotype. Finally, we discuss conceptual methods that can lead to enhanced gene identification and dissection of disease basis, knowledge that will potentially form a foundation for the design of future therapeutics.


Assuntos
Encéfalo/patologia , Predisposição Genética para Doença , Hidrocefalia/genética , Mutação/genética , Animais , Líquido Cefalorraquidiano/metabolismo , Humanos , Hidrocefalia/patologia , Fenótipo
6.
Cell ; 137(1): 32-45, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19345185

RESUMO

Cilia are complex structures that have garnered interest because of their roles in vertebrate development and their involvement in human genetic disorders. In contrast to multicellular invertebrates in which cilia are restricted to specific cell types, these organelles are found almost ubiquitously in vertebrate cells, where they serve a diverse set of signaling functions. Here, we highlight properties of vertebrate cilia, with particular emphasis on their relationship with other subcellular structures, and explore the physiological consequences of ciliary dysfunction.


Assuntos
Cílios/fisiologia , Vertebrados/fisiologia , Animais , Eucariotos/citologia , Humanos , Transdução de Sinais , Transcrição Gênica
7.
Am J Hum Genet ; 106(6): 893-904, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32386558

RESUMO

Kinesin-2 enables ciliary assembly and maintenance as an anterograde intraflagellar transport (IFT) motor. Molecular motor activity is driven by a heterotrimeric complex comprised of KIF3A and KIF3B or KIF3C plus one non-motor subunit, KIFAP3. Using exome sequencing, we identified heterozygous KIF3B variants in two unrelated families with hallmark ciliopathy phenotypes. In the first family, the proband presents with hepatic fibrosis, retinitis pigmentosa, and postaxial polydactyly; he harbors a de novo c.748G>C (p.Glu250Gln) variant affecting the kinesin motor domain encoded by KIF3B. The second family is a six-generation pedigree affected predominantly by retinitis pigmentosa. Affected individuals carry a heterozygous c.1568T>C (p.Leu523Pro) KIF3B variant segregating in an autosomal-dominant pattern. We observed a significant increase in primary cilia length in vitro in the context of either of the two mutations while variant KIF3B proteins retained stability indistinguishable from wild type. Furthermore, we tested the effects of KIF3B mutant mRNA expression in the developing zebrafish retina. In the presence of either missense variant, rhodopsin was sequestered to the photoreceptor rod inner segment layer with a concomitant increase in photoreceptor cilia length. Notably, impaired rhodopsin trafficking is also characteristic of recessive KIF3B models as exemplified by an early-onset, autosomal-recessive, progressive retinal degeneration in Bengal cats; we identified a c.1000G>A (p.Ala334Thr) KIF3B variant by genome-wide association study and whole-genome sequencing. Together, our genetic, cell-based, and in vivo modeling data delineate an autosomal-dominant syndromic retinal ciliopathy in humans and suggest that multiple KIF3B pathomechanisms can impair kinesin-driven ciliary transport in the photoreceptor.


Assuntos
Ciliopatias/genética , Ciliopatias/patologia , Genes Dominantes/genética , Cinesinas/genética , Mutação , Retina/patologia , Sequência de Aminoácidos , Animais , Gatos , Pré-Escolar , Cílios/patologia , Feminino , Estudo de Associação Genômica Ampla , Heterozigoto , Humanos , Cinesinas/química , Cinesinas/metabolismo , Larva , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Células Fotorreceptoras/metabolismo , Retina/citologia , Retina/crescimento & desenvolvimento , Retina/metabolismo , Rodopsina/metabolismo , Adulto Jovem , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
8.
Hum Genomics ; 16(1): 37, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076307

RESUMO

INTRODUCTION: A major challenge to enabling precision health at a global scale is the bias between those who enroll in state sponsored genomic research and those suffering from chronic disease. More than 30 million people have been genotyped by direct-to-consumer (DTC) companies such as 23andMe, Ancestry DNA, and MyHeritage, providing a potential mechanism for democratizing access to medical interventions and thus catalyzing improvements in patient outcomes as the cost of data acquisition drops. However, much of these data are sequestered in the initial provider network, without the ability for the scientific community to either access or validate. Here, we present a novel geno-pheno platform that integrates heterogeneous data sources and applies learnings to common chronic disease conditions including Type 2 diabetes (T2D) and hypertension. METHODS: We collected genotyped data from a novel DTC platform where participants upload their genotype data files and were invited to answer general health questionnaires regarding cardiometabolic traits over a period of 6 months. Quality control, imputation, and genome-wide association studies were performed on this dataset, and polygenic risk scores were built in a case-control setting using the BASIL algorithm. RESULTS: We collected data on N = 4,550 (389 cases / 4,161 controls) who reported being affected or previously affected for T2D and N = 4,528 (1,027 cases / 3,501 controls) for hypertension. We identified 164 out of 272 variants showing identical effect direction to previously reported genome-significant findings in Europeans. Performance metric of the PRS models was AUC = 0.68, which is comparable to previously published PRS models obtained with larger datasets including clinical biomarkers. DISCUSSION: DTC platforms have the potential of inverting research models of genome sequencing and phenotypic data acquisition. Quality control (QC) mechanisms proved to successfully enable traditional GWAS and PRS analyses. The direct participation of individuals has shown the potential to generate rich datasets enabling the creation of PRS cardiometabolic models. More importantly, federated learning of PRS from reuse of DTC data provides a mechanism for scaling precision health care delivery beyond the small number of countries who can afford to finance these efforts directly. CONCLUSIONS: The genetics of T2D and hypertension have been studied extensively in controlled datasets, and various polygenic risk scores (PRS) have been developed. We developed predictive tools for both phenotypes trained with heterogeneous genotypic and phenotypic data generated outside of the clinical environment and show that our methods can recapitulate prior findings with fidelity. From these observations, we conclude that it is possible to leverage DTC genetic repositories to identify individuals at risk of debilitating diseases based on their unique genetic landscape so that informed, timely clinical interventions can be incorporated.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Hipertensão , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/genética , Herança Multifatorial/genética , Fenótipo , Medicina de Precisão , Fatores de Risco
9.
PLoS Genet ; 16(9): e1009010, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32956375

RESUMO

Essential tremor (ET) is the most common adult-onset movement disorder. In the present study, we performed whole exome sequencing of a large ET-affected family (10 affected and 6 un-affected family members) and identified a TUB p.V431I variant (rs75594955) segregating in a manner consistent with autosomal-dominant inheritance. Subsequent targeted re-sequencing of TUB in 820 unrelated individuals with sporadic ET and 630 controls revealed significant enrichment of rare nonsynonymous TUB variants (e.g. rs75594955: p.V431I, rs1241709665: p.Ile20Phe, rs55648406: p.Arg49Gln) in the ET cohort (SKAT-O test p-value = 6.20e-08). TUB encodes a transcription factor predominantly expressed in neuronal cells and has been previously implicated in obesity. ChIP-seq analyses of the TUB transcription factor across different regions of the mouse brain revealed that TUB regulates the pathways responsible for neurotransmitter production as well thyroid hormone signaling. Together, these results support the association of rare variants in TUB with ET.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Tremor Essencial/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Estudos de Coortes , Exoma/genética , Família , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Fatores de Transcrição/genética , Sequenciamento do Exoma/métodos
10.
Kidney Int ; 101(3): 473-484, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34780871

RESUMO

Advances in clinical diagnostics and molecular tools have improved our understanding of the genetically heterogeneous causes underlying congenital anomalies of kidney and urinary tract (CAKUT). However, despite a sharp incline of CAKUT reports in the literature within the past 2 decades, there remains a plateau in the genetic diagnostic yield that is disproportionate to the accelerated ability to generate robust genome-wide data. Explanations for this observation include (i) diverse inheritance patterns with incomplete penetrance and variable expressivity, (ii) rarity of single-gene drivers such that large sample sizes are required to meet the burden of proof, and (iii) multigene interactions that might produce either intra- (e.g., copy number variants) or inter- (e.g., effects in trans) locus effects. These challenges present an opportunity for the community to implement innovative genetic and molecular avenues to explain the missing heritability and to better elucidate the mechanisms that underscore CAKUT. Here, we review recent multidisciplinary approaches at the intersection of genetics, genomics, in vivo modeling, and in vitro systems toward refining a blueprint for overcoming the diagnostic hurdles that are pervasive in urinary tract malformation cohorts. These approaches will not only benefit clinical management by reducing age at molecular diagnosis and prompting early evaluation for comorbid features but will also serve as a springboard for therapeutic development.


Assuntos
Sistema Urinário , Anormalidades Urogenitais , Variações do Número de Cópias de DNA , Genômica , Humanos , Rim/anormalidades , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/genética
11.
Hum Mol Genet ; 29(9): 1489-1497, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32307552

RESUMO

Despite the wide use of genomics to investigate the molecular basis of rare congenital malformations, a significant fraction of patients remains bereft of diagnosis. As part of our continuous effort to recruit and perform genomic and functional studies on such cohorts, we investigated the genetic and mechanistic cause of disease in two independent consanguineous families affected by overlapping craniofacial, cardiac, laterality and neurodevelopmental anomalies. Using whole exome sequencing, we identified homozygous frameshift CCDC32 variants in three affected individuals. Functional analysis in a zebrafish model revealed that ccdc32 depletion recapitulates the human phenotypes. Because some of the patient phenotypes overlap defects common to ciliopathies, we asked if loss of CCDC32 might contribute to the dysfunction of this organelle. Consistent with this hypothesis, we show that ccdc32 is required for normal cilia formation in zebrafish embryos and mammalian cell culture, arguing that ciliary defects are at least partially involved in the pathomechanism of this disorder.


Assuntos
Ciliopatias/genética , Anormalidades Congênitas/genética , Cardiopatias Congênitas/genética , Transtornos do Neurodesenvolvimento/genética , Animais , Sistemas CRISPR-Cas/genética , Cílios/genética , Cílios/patologia , Ciliopatias/complicações , Ciliopatias/patologia , Anormalidades Congênitas/patologia , Anormalidades Craniofaciais/complicações , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Exoma/genética , Feminino , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/patologia , Homozigoto , Humanos , Mutação com Perda de Função/genética , Masculino , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Fenótipo , Sequenciamento do Exoma , Peixe-Zebra/genética
12.
Hum Mol Genet ; 29(14): 2435-2450, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32620954

RESUMO

Dysfunction of the gonadotropin-releasing hormone (GnRH) axis causes a range of reproductive phenotypes resulting from defects in the specification, migration and/or function of GnRH neurons. To identify additional molecular components of this system, we initiated a systematic genetic interrogation of families with isolated GnRH deficiency (IGD). Here, we report 13 families (12 autosomal dominant and one autosomal recessive) with an anosmic form of IGD (Kallmann syndrome) with loss-of-function mutations in TCF12, a locus also known to cause syndromic and non-syndromic craniosynostosis. We show that loss of tcf12 in zebrafish larvae perturbs GnRH neuronal patterning with concomitant attenuation of the orthologous expression of tcf3a/b, encoding a binding partner of TCF12, and stub1, a gene that is both mutated in other syndromic forms of IGD and maps to a TCF12 affinity network. Finally, we report that restored STUB1 mRNA rescues loss of tcf12 in vivo. Our data extend the mutational landscape of IGD, highlight the genetic links between craniofacial patterning and GnRH dysfunction and begin to assemble the functional network that regulates the development of the GnRH axis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hormônio Liberador de Gonadotropina/genética , Síndrome de Kallmann/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Peixe-Zebra/genética , Adulto , Idoso , Animais , Modelos Animais de Doenças , Feminino , Genes Dominantes/genética , Hormônio Liberador de Gonadotropina/deficiência , Haploinsuficiência/genética , Humanos , Síndrome de Kallmann/patologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Peixe-Zebra/genética
13.
Am J Hum Genet ; 104(1): 94-111, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609410

RESUMO

The use of whole-exome and whole-genome sequencing has been a catalyst for a genotype-first approach to diagnostics. Under this paradigm, we have implemented systematic sequencing of neonates and young children with a suspected genetic disorder. Here, we report on two families with recessive mutations in NCAPG2 and overlapping clinical phenotypes that include severe neurodevelopmental defects, failure to thrive, ocular abnormalities, and defects in urogenital and limb morphogenesis. NCAPG2 encodes a member of the condensin II complex, necessary for the condensation of chromosomes prior to cell division. Consistent with a causal role for NCAPG2, we found abnormal chromosome condensation, augmented anaphase chromatin-bridge formation, and micronuclei in daughter cells of proband skin fibroblasts. To test the functional relevance of the discovered variants, we generated an ncapg2 zebrafish model. Morphants displayed clinically relevant phenotypes, such as renal anomalies, microcephaly, and concomitant increases in apoptosis and altered mitotic progression. These could be rescued by wild-type but not mutant human NCAPG2 mRNA and were recapitulated in CRISPR-Cas9 F0 mutants. Finally, we noted that the individual with a complex urogenital defect also harbored a heterozygous NPHP1 deletion, a common contributor to nephronophthisis. To test whether sensitization at the NPHP1 locus might contribute to a more severe renal phenotype, we co-suppressed nphp1 and ncapg2, which resulted in significantly more dysplastic renal tubules in zebrafish larvae. Together, our data suggest that impaired function of NCAPG2 results in a severe condensinopathy, and they highlight the potential utility of examining candidate pathogenic lesions beyond the primary disease locus.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Mutação , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Criança , Pré-Escolar , Proteínas do Citoesqueleto , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Membrana/genética , Linhagem , Síndrome , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
14.
Am J Hum Genet ; 104(6): 1233-1240, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31130285

RESUMO

Noonan syndrome (NS) is characterized by distinctive craniofacial appearance, short stature, and congenital heart disease. Approximately 80% of individuals with NS harbor mutations in genes whose products are involved in the RAS/mitogen-activating protein kinase (MAPK) pathway. However, the underlying genetic causes in nearly 20% of individuals with NS phenotype remain unexplained. Here, we report four de novo RRAS2 variants in three individuals with NS. RRAS2 is a member of the RAS subfamily and is ubiquitously expressed. Three variants, c.70_78dup (p.Gly24_Gly26dup), c.216A>T (p.Gln72His), and c.215A>T (p.Gln72Leu), have been found in cancers; our functional analyses showed that these three changes induced elevated association of RAF1 and that they activated ERK1/2 and ELK1. Notably, prominent activation of ERK1/2 and ELK1 by p.Gln72Leu associates with the severe phenotype of the individual harboring this change. To examine variant pathogenicity in vivo, we generated zebrafish models. Larvae overexpressing c.70_78dup (p.Gly24_Gly26dup) or c.216A>T (p.Gln72His) variants, but not wild-type RRAS2 RNAs, showed craniofacial defects and macrocephaly. The same dose injection of mRNA encoding c.215A>T (p.Gln72Leu) caused severe developmental impairments and low dose overexpression of this variant induced craniofacial defects. In contrast, the RRAS2 c.224T>G (p.Phe75Cys) change, located on the same allele with p.Gln72His in an individual with NS, resulted in no aberrant in vitro or in vivo phenotypes by itself. Together, our findings suggest that activating RRAS2 mutations can cause NS and expand the involvement of RRAS2 proto-oncogene to rare germline disorders.


Assuntos
Mutação com Ganho de Função , Mutação em Linhagem Germinativa , Proteínas de Membrana/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Síndrome de Noonan/etiologia , Peixe-Zebra/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Criança , Pré-Escolar , Exoma , Feminino , Humanos , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Síndrome de Noonan/patologia , Fenótipo , Conformação Proteica , Proto-Oncogene Mas , Homologia de Sequência , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
15.
Am J Hum Genet ; 104(6): 1073-1087, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31079899

RESUMO

Cargo transport along the cytoplasmic microtubular network is essential for neuronal function, and cytoplasmic dynein-1 is an established molecular motor that is critical for neurogenesis and homeostasis. We performed whole-exome sequencing, homozygosity mapping, and chromosomal microarray studies in five individuals from three independent pedigrees and identified likely-pathogenic variants in DYNC1I2 (Dynein Cytoplasmic 1 Intermediate Chain 2), encoding a component of the cytoplasmic dynein 1 complex. In a consanguineous Pakistani family with three affected individuals presenting with microcephaly, severe intellectual disability, simplification of cerebral gyration, corpus callosum hypoplasia, and dysmorphic facial features, we identified a homozygous splice donor site variant (GenBank: NM_001378.2:c.607+1G>A). We report two additional individuals who have similar neurodevelopmental deficits and craniofacial features and harbor deleterious variants; one individual bears a c.740A>G (p.Tyr247Cys) change in trans with a 374 kb deletion encompassing DYNC1I2, and an unrelated individual harbors the compound-heterozygous variants c.868C>T (p.Gln290∗) and c.740A>G (p.Tyr247Cys). Zebrafish larvae subjected to CRISPR-Cas9 gene disruption or transient suppression of dync1i2a displayed significantly altered craniofacial patterning with concomitant reduction in head size. We monitored cell death and cell cycle progression in dync1i2a zebrafish models and observed significantly increased apoptosis, likely due to prolonged mitosis caused by abnormal spindle morphology, and this finding offers initial insights into the cellular basis of microcephaly. Additionally, complementation studies in zebrafish demonstrate that p.Tyr247Cys attenuates gene function, consistent with protein structural analysis. Our genetic and functional data indicate that DYNC1I2 dysfunction probably causes an autosomal-recessive microcephaly syndrome and highlight further the critical roles of the dynein-1 complex in neurodevelopment.


Assuntos
Anormalidades Craniofaciais/etiologia , Dineínas/genética , Deficiência Intelectual/etiologia , Malformações Arteriovenosas Intracranianas/etiologia , Microcefalia/etiologia , Mutação , Peixe-Zebra/crescimento & desenvolvimento , Adulto , Alelos , Sequência de Aminoácidos , Animais , Pré-Escolar , Anormalidades Craniofaciais/patologia , Dineínas/química , Dineínas/metabolismo , Exoma , Feminino , Homozigoto , Humanos , Lactente , Deficiência Intelectual/patologia , Malformações Arteriovenosas Intracranianas/patologia , Masculino , Microcefalia/patologia , Linhagem , Fenótipo , Conformação Proteica , Homologia de Sequência , Sequenciamento do Exoma , Adulto Jovem , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
16.
Am J Hum Genet ; 105(5): 974-986, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31668702

RESUMO

The advent of inexpensive, clinical exome sequencing (ES) has led to the accumulation of genetic data from thousands of samples from individuals affected with a wide range of diseases, but for whom the underlying genetic and molecular etiology of their clinical phenotype remains unknown. In many cases, detailed phenotypes are unavailable or poorly recorded and there is little family history to guide study. To accelerate discovery, we integrated ES data from 18,696 individuals referred for suspected Mendelian disease, together with relatives, in an Apache Hadoop data lake (Hadoop Architecture Lake of Exomes [HARLEE]) and implemented a genocentric analysis that rapidly identified 154 genes harboring variants suspected to cause Mendelian disorders. The approach did not rely on case-specific phenotypic classifications but was driven by optimization of gene- and variant-level filter parameters utilizing historical Mendelian disease-gene association discovery data. Variants in 19 of the 154 candidate genes were subsequently reported as causative of a Mendelian trait and additional data support the association of all other candidate genes with disease endpoints.


Assuntos
Doenças Genéticas Inatas/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Bases de Dados Genéticas , Exoma/genética , Genômica/métodos , Humanos , Linhagem , Fenótipo , Sequenciamento do Exoma/métodos
17.
Hum Mol Genet ; 28(9): 1474-1486, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590535

RESUMO

The 16p11.2 BP4-BP5 deletion and duplication syndromes are associated with a complex spectrum of neurodevelopmental phenotypes that includes developmental delay and autism spectrum disorder, with a reciprocal effect on head circumference, brain structure and body mass index. Mouse models of the 16p11.2 copy number variant have recapitulated some of the patient phenotypes, while studies in flies and zebrafish have uncovered several candidate contributory genes within the region, as well as complex genetic interactions. We evaluated one of these loci, KCTD13, by modeling haploinsufficiency and complete knockout in mice. In contrast to the zebrafish model, and in agreement with recent data, we found normal brain structure in heterozygous and homozygous mutants. However, recapitulating previously observed genetic interactions, we discovered sex-specific brain volumetric alterations in double heterozygous Kctd13xMvp and Kctd13xLat mice. Behavioral testing revealed a significant deficit in novel object recognition, novel location recognition and social transmission of food preference in Kctd13 mutants. These phenotypes were concomitant with a reduction in density of mature spines in the hippocampus, but potentially independent of RhoA abundance, which was unperturbed postnatally in our mutants. Furthermore, transcriptome analyses from cortex and hippocampus highlighted the dysregulation of pathways important in neurodevelopment, the most significant of which was synaptic formation. Together, these data suggest that KCTD13 contributes to the neurocognitive aspects of patients with the BP4-BP5 deletion, likely through genetic interactions with other loci.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Transtornos da Memória/genética , Transtornos da Memória/psicologia , Memória de Curto Prazo , Complexos Ubiquitina-Proteína Ligase/deficiência , Animais , Comportamento Animal , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Marcação de Genes , Loci Gênicos , Genótipo , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Deleção de Sequência , Fatores Sexuais
18.
Hum Genet ; 140(12): 1733-1751, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34647195

RESUMO

Mitochondrial disorders are collectively common, genetically heterogeneous disorders in both pediatric and adult populations. They are caused by molecular defects in oxidative phosphorylation, failure of essential bioenergetic supply to mitochondria, and apoptosis. Here, we present three affected individuals from a consanguineous family of Pakistani origin with variable seizures and intellectual disability. Both females display primary ovarian insufficiency (POI), while the male shows abnormal sex hormone levels. We performed whole exome sequencing and identified a recessive missense variant c.694C > T, p.Arg232Cys in TFAM that segregates with disease. TFAM (mitochondrial transcription factor A) is a component of the mitochondrial replisome machinery that maintains mtDNA transcription and replication. In primary dermal fibroblasts, we show depletion of mtDNA and significantly altered mitochondrial function and morphology. Moreover, we observed reduced nucleoid numbers with significant changes in nucleoid size or shape in fibroblasts from an affected individual compared to controls. We also investigated the effect of tfam impairment in zebrafish; homozygous tfam mutants carrying an in-frame c.141_149 deletion recapitulate the mtDNA depletion and ovarian dysgenesis phenotypes observed in affected humans. Together, our genetic and functional data confirm that TFAM plays a pivotal role in gonad development and expands the repertoire of mitochondrial disease phenotypes.


Assuntos
DNA Mitocondrial , Proteínas de Ligação a DNA/genética , Genes Recessivos , Perda Auditiva/genética , Deficiência Intelectual/genética , Proteínas Mitocondriais/genética , Insuficiência Ovariana Primária/genética , Convulsões/genética , Fatores de Transcrição/genética , Animais , Células Cultivadas , Feminino , Gônadas/embriologia , Humanos , Masculino , Linhagem , Peixe-Zebra/genética
19.
Am J Hum Genet ; 102(3): 364-374, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29429573

RESUMO

Despite the rapid discovery of genes for rare genetic disorders, we continue to encounter individuals presenting with syndromic manifestations. Here, we have studied four affected people in three families presenting with cholestasis, congenital diarrhea, impaired hearing, and bone fragility. Whole-exome sequencing of all affected individuals and their parents identified biallelic mutations in Unc-45 Myosin Chaperone A (UNC45A) as a likely driver for this disorder. Subsequent in vitro and in vivo functional studies of the candidate gene indicated a loss-of-function paradigm, wherein mutations attenuated or abolished protein activity with concomitant defects in gut development and function.


Assuntos
Osso e Ossos/patologia , Colestase/genética , Diarreia/genética , Perda Auditiva/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação com Perda de Função/genética , Adolescente , Animais , Pré-Escolar , Diarreia/fisiopatologia , Família , Feminino , Fibroblastos/patologia , Motilidade Gastrointestinal , Humanos , Recém-Nascido , Linfócitos/patologia , Masculino , Linhagem , Fenótipo , Síndrome , Adulto Jovem , Peixe-Zebra
20.
Clin Genet ; 99(2): 318-324, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33169370

RESUMO

Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinitis pigmentosa, obesity, polydactyly, cognitive impairment and renal failure. Pathogenic variants in 24 genes account for the molecular basis of >80% of cases. Toward saturated discovery of the mutational basis of the disorder, we carefully explored our cohorts and identified a hominid-specific SINE-R/VNTR/Alu type F (SVA-F) insertion in exon 13 of BBS1 in eight families. In six families, the repeat insertion was found in trans with c.1169 T > G, p.Met390Arg and in two families the insertion was found in addition to other recessive BBS loci. Whole genome sequencing, de novo assembly and SNP array analysis were performed to characterize the genomic event. This insertion is extremely rare in the general population (found in 8 alleles of 8 BBS cases but not in >10 800 control individuals from gnomAD-SV) and due to a founder effect. Its 2435 bp sequence contains hallmarks of LINE1 mediated retrotransposition. Functional studies with patient-derived cell lines confirmed that the BBS1 SVA-F is deleterious as evidenced by a significant depletion of both mRNA and protein levels. Such findings highlight the importance of dedicated bioinformatics pipelines to identify all types of variation.


Assuntos
Síndrome de Bardet-Biedl/genética , Proteínas Associadas aos Microtúbulos/genética , Retroelementos , Estudos de Coortes , Feminino , Efeito Fundador , Frequência do Gene , Humanos , Masculino , Mutagênese Insercional , Linhagem , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA