RESUMO
Pioneer transcription factors, by virtue of their ability to target nucleosomal DNA in silent chromatin, play crucial roles in eliciting cell fate decisions during development and cellular reprogramming. In addition to their well-established role in chromatin opening to activate gene expression programs, recent studies have demonstrated that pioneer factors have the complementary function of being able to silence the starting cell identity through targeted chromatin repression. Given recent discoveries regarding the repressive aspect of pioneer function, we discuss the basis by which pioneer factors can suppress alternative lineage programs in the context of cell fate control.
Assuntos
Cromatina , Fatores de Transcrição , Animais , Humanos , Diferenciação Celular/genética , Linhagem da Célula/genética , Cromatina/metabolismo , Cromatina/genética , Nucleossomos/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genéticaRESUMO
BACKGROUND AND AIMS: Assessing mammalian gene function in vivo has traditionally relied on manipulation of the mouse genome in embryonic stem cells or perizygotic embryos. These approaches are time-consuming and require extensive breeding when simultaneous mutations in multiple genes is desired. The aim of this study is to introduce a rapid in vivo multiplexed editing (RIME) method and provide proof of concept of this system. APPROACH AND RESULTS: RIME, a system wherein CRISPR/caspase 9 technology, paired with adeno-associated viruses (AAVs), permits the inactivation of one or more genes in the adult mouse liver. The method is quick, requiring as little as 1 month from conceptualization to knockout, and highly efficient, enabling editing in >95% of target cells. To highlight its use, we used this system to inactivate, alone or in combination, genes with functions spanning metabolism, mitosis, mitochondrial maintenance, and cell proliferation. CONCLUSIONS: RIME enables the rapid, efficient, and inexpensive analysis of multiple genes in the mouse liver in vivo .
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Camundongos , Animais , Edição de Genes/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fígado , MamíferosRESUMO
BACKGROUND AND AIMS: Following liver injury, a fraction of hepatocytes adopt features of biliary epithelial cells (BECs) in a process known as biliary reprogramming. The aim of this study was to elucidate the molecular events accompanying this dramatic shift in cellular identity. APPROACH AND RESULTS: We applied the techniques of bulk RNA-sequencing (RNA-seq), single-cell RNA-seq, and assay for transposase-accessible chromatin with high-throughput sequencing to define the epigenetic and transcriptional changes associated with biliary reprogramming. In addition, we examined the role of TGF-ß signaling by profiling cells undergoing reprogramming in mice with hepatocyte-specific deletion in the downstream TGF-ß signaling component mothers against decapentaplegic homolog 4 (Smad4). Biliary reprogramming followed a stereotyped pattern of altered gene expression consisting of robust induction of biliary genes and weaker repression of hepatocyte genes. These changes in gene expression were accompanied by corresponding modifications at the chromatin level. Although some reprogrammed cells had molecular features of "fully differentiated" BECs, most lacked some biliary characteristics and retained some hepatocyte characteristics. Surprisingly, single-cell analysis of Smad4 mutant mice revealed a dramatic increase in reprogramming. CONCLUSION: Hepatocytes undergo widespread chromatin and transcriptional changes during biliary reprogramming, resulting in epigenetic and gene expression profiles that are similar to, but distinct from, native BECs. Reprogramming involves a progressive accumulation of biliary molecular features without discrete intermediates. Paradoxically, canonical TGF-ß signaling through Smad4 appears to constrain biliary reprogramming, indicating that TGF-ß can either promote or inhibit biliary differentiation depending on which downstream components of the pathway are engaged. This work has implications for the formation of BECs and bile ducts in the adult liver.
Assuntos
Plasticidade Celular/genética , Regeneração Hepática/genética , Fígado/fisiologia , Animais , Ductos Biliares/citologia , Diferenciação Celular/genética , Epigênese Genética , Células Epiteliais/fisiologia , Hepatócitos/fisiologia , Hepatócitos/transplante , Humanos , Fígado/citologia , Masculino , Camundongos , Camundongos Transgênicos , RNA-Seq , Análise de Célula Única , Proteína Smad4/genéticaRESUMO
The integration of a bile drainage structure into engineered liver tissues is an important issue in the advancement of liver regenerative medicine. Primary biliary cells, which play a vital role in bile metabolite accumulation, are challenging to obtain in vitro because of their low density in the liver. In contrast, large amounts of purified hepatocytes can be easily acquired from rodents. The in vitro chemically induced liver progenitors (CLiPs) from primary mature hepatocytes offer a platform to produce biliary cells abundantly. Here, we generated a functional CLiP-derived tubular bile duct-like structure using the chemical conversion technology. We obtained an integrated tubule-hepatocyte tissue via the direct coculture of hepatocytes on the established tubular biliary-duct-like structure. This integrated tubule-hepatocyte tissue was able to transport the bile, as quantified by the cholyl-lysyl-fluorescein assay, which was not observed in the un-cocultured structure or in the biliary cell monolayer. Furthermore, this in vitro integrated tubule-hepatocyte tissue exhibited an upregulation of hepatic marker genes. Together, these findings demonstrated the efficiency of the CLiP-derived tubular biliary-duct-like structures regarding the accumulation and transport of bile.
Assuntos
Bile/metabolismo , Sistema Biliar/metabolismo , Diferenciação Celular , Células Epiteliais/metabolismo , Hepatócitos/metabolismo , Células-Tronco/metabolismo , Animais , Sistema Biliar/citologia , Transporte Biológico Ativo , Técnicas de Cocultura , Células Epiteliais/citologia , Hepatócitos/citologia , Masculino , Ratos , Ratos Wistar , Células-Tronco/citologiaRESUMO
One of the pathological hallmarks of Alzheimer's disease (AD) is the presence of extracellular plaques resulting from the accumulation of beta-amyloid peptide (Aß). To date, a definitive cure for this disease is still lacking as the currently approved drugs used are mainly symptomatic treatments. The revolutionary discovery of extracellular vesicles (EVs) has shed new light on the development of disease-modifying treatments for AD, owing to their potential in delivering the therapeutic agents to the brain. The feasibility of harnessing EVs for clinical applications is highly dependent on the donor cell, which determines the intrinsic properties of EVs. The merit of mesenchymal stem cells (MSCs) as therapeutic delivery vehicles, and the proven therapeutic effects of the EVs derived from these cells, make researchers esteem MSCs as ideal producers of EVs. Therefore, MSC-derived EVs (MSC-EVs) emerge to be an appealing therapeutic delivery approach for the treatment of AD. Here, we discuss perspectives on the therapeutic strategies using MSC-EVs to treat AD and the associated challenges in clinical application.
Assuntos
Doença de Alzheimer/terapia , Micropartículas Derivadas de Células/transplante , Células-Tronco Mesenquimais , Doença de Alzheimer/imunologia , Animais , HumanosRESUMO
Over the past several years, considerable focus has been placed on the need for 'biomarkers'. However, traditional biomarkers, such as CEA or CA19-9, for gastrointestinal cancer do not provide sufficient sensitivity and specificity for diagnosing cancer. Moreover, these biomarkers cannot provide information regarding the individual variability of patients. Recently, extracellular vesicles (EVs) and extracellular microRNA (miRNA) have shown potential in cancer diagnosis because tumor cells have been shown to release EVs and miRNAs, which mirror their cellular origin, into circulation. Therefore, detection of tumor-specific EVs and extracellular miRNA in body fluids from cancer patients could serve as a non-invasive liquid biopsy for cancer diagnosis and monitoring. This review explores the potential contribution of liquid biopsy using EVs and extracellular miRNA to diagnosis and monitor cancer, including an assessment of prognosis and early detection of disease recurrence in patients with cancer.
Assuntos
Biomarcadores Tumorais/genética , Vesículas Extracelulares/metabolismo , Biópsia Líquida/métodos , MicroRNAs/genética , Humanos , PrognósticoRESUMO
Extracellular vesicles (EVs) are nanometer-sized membranous vesicles that are released by a variety of cell types into the extracellular space. In the past two decades, EVs have emerged as novel mediators of cancer biology. Many reports have demonstrated the contribution of EVs to cancer metastasis. Metastasis is a multistep process that is responsible for the majority of deaths in cancer patients. This process includes proliferation, angiogenesis, immune modulation, extravasation, intravasation, and colonization. EVs from cancer cells impact these steps through modulation of the host immune system, angiogenesis, and pre-/pro-metastatic niche formation. In this review, we summarize the function of EVs in cancer metastasis. In addition, we also discuss the hurdles to be overcome for further developing this research field.
Assuntos
Vesículas Extracelulares/patologia , Metástase Neoplásica/patologia , Animais , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/patologia , Evasão TumoralRESUMO
A small fraction of tumor cells are thought to possess the potential for both multiple-lineage differentiation and self-renewal, which underlies the cancer stem cell hypothesis. However, the differentiation mechanisms of these cells have not been elucidated due to a lack of appropriate culture methods. Here, we established a culture condition for maintaining multipotent tumor cells from rat breast tumors using 4 small molecules. Cultured tumor cells in this condition retained their intrinsic myoepithelial features, expressing p63 and CK14 and vimentin. In a xenograft model, the p63-expressing cells formed epithelial tumors containing glandular, squamous and sebaceous compartments. Upon withdrawal of the small molecules, p63 and CK14 expression was lost, with concurrent increase in expression of mesenchymal markers. These transited cells acquired drug resistance and invasiveness and showed massive sarcomatoid tumorigenicity. Epithelial features could not be recovered by re-exposure to the small molecules in the transited cells. Here, we have identified multipotent cancer cells within primary mammary tumors and demonstrated that their plasticity is maintained by the small molecules.
Assuntos
Neoplasias da Mama/metabolismo , Carcinoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transativadores/metabolismo , Vimentina/metabolismo , Animais , Mama/metabolismo , Técnicas de Cultura de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Humanos , Masculino , Glândulas Mamárias Humanas/metabolismo , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos SCID , Microscopia de Fluorescência , Células-Tronco Multipotentes/metabolismo , Invasividade Neoplásica , Transplante de Neoplasias , Ratos , Proteína Supressora de Tumor p53/metabolismoRESUMO
Novel strategies against treatment-resistant tumor cells remain a challenging but promising therapeutic approach. Despite accumulated evidence suggesting the presence of highly malignant cell populations within tumors, the unsolved issues such as in vivo targeting and clinical relevance remain. Here, we report a preclinical trial based on the identified molecular mechanisms underlying osteosarcoma-initiating cells and their clinical relevance. We identified key microRNAs (miRNAs) that were deregulated in a highly malignant CD133(high) population and found that miR-133a regulated the cell invasion that characterizes a lethal tumor phenotype. Silencing of miR-133a with locked nucleic acid (LNA) reduced cell invasion of this cell population, and systemic administration of LNA along with chemotherapy suppressed lung metastasis and prolonged the survival of osteosarcoma-bearing mice. Furthermore, in a clinical study, high expression levels of CD133 and miR-133a were significantly correlated with poor prognosis, whereas high expression levels of the four miR-133a target genes were correlated with good prognosis. Overall, silencing of miR-133a with concurrent chemotherapy would represent a novel strategy that targets multiple regulatory pathways associated with metastasis of the malignant cell population within osteosarcoma.
Assuntos
Neoplasias Ósseas , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs/biossíntese , Osteossarcoma , RNA Neoplásico/biossíntese , Antígeno AC133 , Adulto , Animais , Antígenos CD/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapia , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Glicoproteínas/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Masculino , Camundongos , Camundongos Nus , Camundongos SCID , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/mortalidade , Osteossarcoma/patologia , Osteossarcoma/terapia , Peptídeos/metabolismo , Taxa de SobrevidaRESUMO
Recent important progress in cancer biology was the identification of the significant roles played by extracellular vesicles (EVs). EVs are secreted by a variety of mammalian cell types and have been revealed to play important roles in intercellular communications. EVs serve as unique communication vehicles in many ways. First, unlike cytokine signaling, EVs enable transportation not only of proteins, but also of nucleic acids, including mRNAs and microRNAs. Recent reports showing the functionality of these nucleic acids in the recipient cells have opened up a new avenue of cell-to-cell communication research. Second, EVs have been revealed to transport membrane components including receptors, such as epithelial growth factor receptor. These findings have provided significant insights into understanding the molecular mechanisms of cancer development. Third, EVs protect their contents from clearance by degrading enzymes present in the extracellular space, which allows for remote transportation of the contents, even between organs. This concept is highlighted by recent reports that suggest the deep involvement of cancer cell derived EVs in metastasis. From these points of view, we will summarize recent studies on the relevance of EVs in cancer biology. We will also highlight the possibility of novel diagnostic technologies using circulating EVs in body fluid.
Assuntos
Comunicação Celular/genética , Neoplasias/genética , Vesículas Transportadoras/genética , Transporte Biológico/genética , Exossomos/genética , Exossomos/metabolismo , Humanos , Neoplasias/patologia , RNA Mensageiro/genética , Vesículas Transportadoras/metabolismoRESUMO
MicroRNAs (miRNAs) have attracted significant attention because of their important roles in a variety of physiological and pathological processes. Recent studies have shown that many cell types secrete miRNAs by packaging them into lipid-bilayered small vesicles called exosomes. Furthermore, exosomal miRNAs travel between cells, exert their RNAi effects in the recipient cells, and play important roles in various biological processes. In this article, we will summarize and describe the latest studies on exosomal miRNAs by focusing on their roles in cancer progression, immune regulation, and tissue repair. We will also provide a perspective on the clinical applications of this research field.
Assuntos
MicroRNAs/metabolismo , MicroRNAs/fisiologia , Neoplasias/patologia , Neoplasias/terapia , Animais , Exossomos/genética , Exossomos/metabolismo , Humanos , Neoplasias/genéticaRESUMO
Cell-cell communication is essential for the regulation of various biological phenomena in multicellular organisms, including development and homeostasis. Deregulation of these interactions leads to inappropriate cell-cell communication, resulting in disease development. Cancer cells communicate closely with the cells in their microenvironment, and this communication promotes malignancy via abnormal growth, invasion, drug resistance and metastasis. Understanding cell-cell interactions in cancer is essential for the development of novel anticancer agents. As a result, discovering the communication tools used by cancer cells is important to understanding these interactions. In this review, we summarize the recent findings regarding exosome-mediated cancer development. In addition, we propose that targeting the exosome represents a novel strategy for cancer therapy.
Assuntos
Exossomos/metabolismo , Neoplasias/metabolismo , Animais , Células da Medula Óssea/metabolismo , Comunicação Celular/imunologia , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/metabolismo , Terapia de Alvo Molecular , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologiaRESUMO
Oncogenesis and progression of pancreatic ductal adenocarcinoma (PDAC) are driven by complex interactions between the neoplastic component and the tumor microenvironment, which includes immune, stromal, and parenchymal cells. In particular, most PDACs are characterized by a hypovascular and hypoxic environment that alters tumor cell behavior and limits the efficacy of chemotherapy and immunotherapy. Characterization of the spatial features of the vascular niche could advance our understanding of inter- and intratumoral heterogeneity in PDAC. In this study, we investigated the vascular microenvironment of PDAC by applying imaging mass cytometry using a 26-antibody panel on 35 regions of interest across 9 patients, capturing more than 140,000 single cells. The approach distinguished major cell types, including multiple populations of lymphoid and myeloid cells, endocrine cells, ductal cells, stromal cells, and endothelial cells. Evaluation of cellular neighborhoods identified 10 distinct spatial domains, including multiple immune and tumor-enriched environments as well as the vascular niche. Focused analysis revealed differential interactions between immune populations and the vasculature and identified distinct spatial domains wherein tumor cell proliferation occurs. Importantly, the vascular niche was closely associated with a population of CD44-expressing macrophages enriched for a proangiogenic gene signature. Taken together, this study provides insights into the spatial heterogeneity of PDAC and suggests a role for CD44-expressing macrophages in shaping the vascular niche. Significance: Imaging mass cytometry revealed that pancreatic ductal cancers are composed of 10 distinct cellular neighborhoods, including a vascular niche enriched for macrophages expressing high levels of CD44 and a proangiogenic gene signature.
Assuntos
Carcinoma Ductal Pancreático , Citometria por Imagem , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/irrigação sanguínea , Citometria por Imagem/métodos , Neovascularização Patológica/patologia , Neovascularização Patológica/metabolismo , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/análiseRESUMO
Tissue damage elicits cell fate switching through a process called metaplasia, but how the starting cell fate is silenced and the new cell fate is activated has not been investigated in animals. In cell culture, pioneer transcription factors mediate "reprogramming" by opening new chromatin sites for expression that can attract transcription factors from the starting cell's enhancers. Here we report that SOX4 is sufficient to initiate hepatobiliary metaplasia in the adult mouse liver, closely mimicking metaplasia initiated by toxic damage to the liver. In lineage-traced cells, we assessed the timing of SOX4-mediated opening of enhancer chromatin versus enhancer decommissioning. Initially, SOX4 directly binds to and closes hepatocyte regulatory sequences via an overlapping motif with HNF4A, a hepatocyte master regulatory transcription factor. Subsequently, SOX4 exerts pioneer factor activity to open biliary regulatory sequences. The results delineate a hierarchy by which gene networks become reprogrammed under physiological conditions, providing deeper insight into the basis for cell fate transitions in animals.
Assuntos
Reprogramação Celular , Cromatina , Animais , Camundongos , Diferenciação Celular/genética , Reprogramação Celular/genética , Metaplasia , Fatores de Transcrição/metabolismoRESUMO
Acquired resistance to immunotherapy remains a critical yet incompletely understood biological mechanism. Here, using a mouse model of pancreatic ductal adenocarcinoma (PDAC) to study tumor relapse following immunotherapy-induced responses, we find that resistance is reproducibly associated with an epithelial-to-mesenchymal transition (EMT), with EMT-transcription factors ZEB1 and SNAIL functioning as master genetic and epigenetic regulators of this effect. Acquired resistance in this model is not due to immunosuppression in the tumor immune microenvironment, disruptions in the antigen presentation machinery, or altered expression of immune checkpoints. Rather, resistance is due to a tumor cell-intrinsic defect in T-cell killing. Molecularly, EMT leads to the epigenetic and transcriptional silencing of interferon regulatory factor 6 (Irf6), rendering tumor cells less sensitive to the pro-apoptotic effects of TNF-α. These findings indicate that acquired resistance to immunotherapy may be mediated by programs distinct from those governing primary resistance, including plasticity programs that render tumor cells impervious to T-cell killing.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Imunoterapia , Transição Epitelial-Mesenquimal/genética , Microambiente TumoralRESUMO
Isocitrate dehydrogenase 1 (IDH1) is the most commonly mutated metabolic gene across human cancers. Mutant IDH1 (mIDH1) generates the oncometabolite (R)-2-hydroxyglutarate, disrupting enzymes involved in epigenetics and other processes. A hallmark of IDH1-mutant solid tumors is T cell exclusion, whereas mIDH1 inhibition in preclinical models restores antitumor immunity. Here, we define a cell-autonomous mechanism of mIDH1-driven immune evasion. IDH1-mutant solid tumors show selective hypermethylation and silencing of the cytoplasmic double-stranded DNA (dsDNA) sensor CGAS, compromising innate immune signaling. mIDH1 inhibition restores DNA demethylation, derepressing CGAS and transposable element (TE) subclasses. dsDNA produced by TE-reverse transcriptase (TE-RT) activates cGAS, triggering viral mimicry and stimulating antitumor immunity. In summary, we demonstrate that mIDH1 epigenetically suppresses innate immunity and link endogenous RT activity to the mechanism of action of a US Food and Drug Administration-approved oncology drug.
Assuntos
Evasão da Resposta Imune , Imunidade Inata , Isocitrato Desidrogenase , Neoplasias , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , DNA/metabolismo , Desmetilação do DNA , Metilação de DNA , Elementos de DNA Transponíveis , Epigênese Genética , Glutaratos/metabolismo , Imunidade Inata/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação , Neoplasias/imunologia , Neoplasias/genética , Nucleotidiltransferases/genética , Evasão Tumoral , Evasão da Resposta Imune/genéticaRESUMO
Extracellular vesicles (EVs), membrane vesicles that are secreted by a variety of mammalian cell types, have been shown to play an important role in intercellular communication. The contents of EVs, including proteins, microRNAs, and mRNAs, vary according to the cell type that secreted them. Accordingly, researchers have demonstrated that EVs derived from various cell types play different roles in biological phenomena. Considering the ubiquitous presence of mesenchymal stem cells (MSCs) in the body, MSC-derived EVs may take part in a wide range of events. In particular, MSCs have recently attracted much attention due to the therapeutic effects of their secretory factors. MSC-derived EVs may therefore provide novel therapeutic approaches. In this review, we first summarize the wide range of functions of EVs released from different cell types, emphasizing that EVs echo the phenotype of their parent cell. Then, we describe the various therapeutic effects of MSCs and pay particular attention to the significance of their paracrine effect. We then survey recent reports on MSC-derived EVs and consider the therapeutic potential of MSC-derived EVs. Finally, we discuss remaining issues that must be addressed before realizing the practical application of MSC-derived EVs, and we provide some suggestions for enhancing their therapeutic efficiency.
Assuntos
Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Lesões Encefálicas/terapia , Doenças Cardiovasculares/terapia , Exossomos/fisiologia , Exossomos/transplante , Humanos , Nefropatias/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Comunicação ParácrinaRESUMO
Over the last several years, a method has emerged which endows adult hepatocytes with in vitro proliferative capacity, producing chemically-induced liver progenitors (CLiPs). However, a recent study questioned the origin of these cells, suggesting that resident liver progenitor cells, but not hepatocytes, proliferate. Here, we provide lineage tracing-based evidence that adult hepatocytes acquire proliferative capacity in vitro . Unexpectedly, we also found that the CLiP method allows biliary epithelial cells to acquire extensive proliferative capacity. Interestingly, after long-term culture, hepatocyte-derived cells (hepCLiPs) and biliary-derived cells (bilCLiPs) become similar in their gene expression patterns, and they both exhibit differentiation capacity to form hepatocyte-like cells. Finally, we provide evidence that hepCLiPs can repopulate chronically injured mouse livers, reinforcing our earlier argument that CLiPs can be a cell source for liver regenerative medicine. Moreover, this study offers bilCLiPs as a potential cell source for liver regenerative medicine.
RESUMO
Over the last several years, a method has emerged that endows adult hepatocytes with in vitro proliferative capacity, producing chemically induced liver progenitors (CLiPs). However, there is a growing controversy regarding the origin of these cells. Here, we provide lineage tracing-based evidence that adult hepatocytes acquire proliferative capacity in vitro using rat and mouse models. Unexpectedly, we also found that the CLiP method allows biliary epithelial cells to acquire extensive proliferative capacity. Interestingly, after long-term culture, hepatocyte-derived cells (hepCLiPs) and biliary epithelial cell-derived cells (bilCLiPs) become similar in their gene expression patterns, and they both exhibit differentiation capacity to form hepatocyte-like cells. Finally, we provide evidence that hepCLiPs can repopulate injured mouse livers, reinforcing our earlier argument that CLiPs can be a cell source for liver regenerative medicine. This study advances our understanding of the origin of CLiPs and motivates the application of this technique in liver regenerative medicine.
Assuntos
Hepatócitos , Células-Tronco , Camundongos , Ratos , Animais , Células-Tronco/metabolismo , Fígado , Células Epiteliais/metabolismo , Diferenciação Celular , Proliferação de CélulasRESUMO
Tissue damage elicits cell fate switching through a process called metaplasia, but how the starting cell fate is silenced and the new cell fate is activated has not been investigated in animals. In cell culture, pioneer transcription factors mediate "reprogramming" by opening new chromatin sites for expression that can attract transcription factors from the starting cell's enhancers. Here we report that Sox4 is sufficient to initiate hepatobiliary metaplasia in the adult liver. In lineage-traced cells, we assessed the timing of Sox4-mediated opening of enhancer chromatin versus enhancer decommissioning. Initially, Sox4 directly binds to and closes hepatocyte regulatory sequences via a motif it overlaps with Hnf4a, a hepatocyte master regulator. Subsequently, Sox4 exerts pioneer factor activity to open biliary regulatory sequences. The results delineate a hierarchy by which gene networks become reprogrammed under physiological conditions, providing deeper insight into the basis for cell fate transitions in animals.