Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Pure Appl Chem ; 93(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924633

RESUMO

Scientific projects frequently involve measurements of thermophysical, thermochemical, and other related properties of chemical compounds and materials. These measured property data have significant potential value for the scientific community, but incomplete and inaccurate reporting often hampers their utilization. The present IUPAC Technical Report summarizes the needs of chemical engineers and researchers as consumers of these data and shows how publishing practices can improve information transfer. In the Report, general principles of Good Reporting Practice are developed together with examples illustrating typical cases of reporting issues. Adoption of these principles will improve the quality, reproducibility, and usefulness of experimental data, bring a better level of consistency to results, and increase the efficiency and impact of research. Closely related to Good Reporting Practice, basic elements of Good Research Practice are also introduced with a goal to reduce the number of ambiguities and unresolved problems within the thermophysical property data domain.

2.
CALPHAD ; 682020.
Artigo em Inglês | MEDLINE | ID: mdl-33311843

RESUMO

The Co-V system has been reviewed. Density functional theory (DFT) calculations using the generalized gradient approximation (GGA) were used to obtain the energies for the end-members for all three intermediate phases, Co3V, σ and CoV3. Results from DFT calculations considering spin polarization were used to evaluate the CALPHAD (Calculation of phase diagrams) model parameters. The method to evaluate the contribution of the magnetism to the energies of Co-rich compounds that was introduced in our previous work is presented in more detail in the present work. For the description of the σ phase, the magnetic part of the total energy is included in the description of the pure Co end-member compound resulting in a non-linear description of the magnetic contribution over composition. The calculated phase diagram obtained from the present CALPHAD description is in good agreement with the experimental data. The metastable FCC-L12 phase diagram was calculated and compared with experimental data.

3.
CALPHAD ; 682020.
Artigo em Inglês | MEDLINE | ID: mdl-33281276

RESUMO

Thermodynamic descriptions in databases for applications in computational thermodynamics require representation of the Gibbs energy of stable as well as metastable phases of the pure elements as a basis to model multi-component systems. In the Calphad methodology these representations are usually based on physical models. Reasonable behavior of the thermodynamic properties of phases extrapolated far outside their stable ranges is necessary in order to avoid that they become stable just because these properties extrapolate badly. This paper proposes a method to prevent crystalline solid phases in multi-component systems to become stable again when extrapolated to temperatures far above their melting temperature.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31579354

RESUMO

Density functional theory (DFT) calculations show that it is essential to consider the magnetic contribution to the total energy for the end-members of the σ phase. A more straightforward method to use the DFT results in a CALPHAD (Calculation of phase diagrams) description has been applied in the present work. It was found that only the results from DFT calculations considering spin-polarization are necessary to obtain a reliable description of the σ phase. The benefits of this method are: the DFT calculation work can be reduced and the CALPHAD description of the magnetic contribution is more reliable. A revised thermodynamic description of the Co-Cr system is presented which gives improved agreement with experimental phase boundary data for the σ phase.

5.
CALPHAD ; 642019.
Artigo em Inglês | MEDLINE | ID: mdl-31579349

RESUMO

The Co-Ta system has been reviewed and the thermodynamic description was re-assessed in the present work. DFT (density functional theory) calculations considering spin polarization were performed to obtain the energies for all end-member configurations of the C14, C15, C36 and µ phases for the evaluation of the Gibbs energies of these phases. The phase diagram calculated with the present description agrees well with the experimental and theoretical data. Considering the DFT results was essential for giving a better description of the µ phase at lower temperatures.

6.
Artigo em Inglês | MEDLINE | ID: mdl-34877147

RESUMO

Most models currently used for complex phases in the calculation of phase diagrams (Calphad) method are based on the compound energy formalism. The way this formalism is presently used, however, is prone to poor extrapolation behavior in higher-order systems, especially when treating phases with complex crystal structures. In this paper, a partition of the Gibbs energy into effective bond energies, without changing its configurational entropy expression, is proposed, thereby remarkably improving the extrapolation behavior. The proposed model allows the use of as many sublattices as there are occupied Wyckoff sites and has great potential for reducing the number of necessary parameters, thus allowing shorter computational time. Examples for face centered cubic (fcc) ordering and the σ phase are given.

7.
JOM (1989) ; 70(9): 1692-1705, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30956517

RESUMO

Oxygen is always a constituent in "real" titanium alloys including titanium alloy powders used for powder-based additive manufacturing (AM). In addition, oxygen uptake during powder handling and printing is hard to control and, hence, it is important to understand and predict how oxygen is affecting the microstructure. Therefore, oxygen is included in the evaluation of the thermodynamic properties of the titanium-vanadium system employing the CALculation of PHAse Diagrams method and a complete model of the O-Ti-V system is presented. The ß-transus temperature is calculated to increase with increasing oxygen content whereas the extension of the α-Ti phase field into the binary is calculated to decrease, which explains the low vanadium solubilities measured in some experimental works. In addition, the critical temperature of the metastable miscibility gap of the ß-phase is calculated to increase to above room temperature when oxygen is added. The effects of oxygen additions on phase fractions, martensite and ω formation temperatures are discussed, along with the impacts these changes may have on AM of titanium alloys.

8.
Acta Mater ; 139: 244-253, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29230094

RESUMO

Numerical simulations are used in this work to investigate aspects of microstructure and microseg-regation during rapid solidification of a Ni-based superalloy in a laser powder bed fusion additive manufacturing process. Thermal modeling by finite element analysis simulates the laser melt pool, with surface temperatures in agreement with in situ thermographic measurements on Inconel 625. Geometric and thermal features of the simulated melt pools are extracted and used in subsequent mesoscale simulations. Solidification in the melt pool is simulated on two length scales. For the multicomponent alloy Inconel 625, microsegregation between dendrite arms is calculated using the Scheil-Gulliver solidification model and DICTRA software. Phase-field simulations, using Ni-Nb as a binary analogue to Inconel 625, produced microstructures with primary cellular/dendritic arm spacings in agreement with measured spacings in experimentally observed microstructures and a lesser extent of microsegregation than predicted by DICTRA simulations. The composition profiles are used to compare thermodynamic driving forces for nucleation against experimentally observed precipitates identified by electron and X-ray diffraction analyses. Our analysis lists the precipitates that may form from FCC phase of enriched interdendritic compositions and compares these against experimentally observed phases from 1 h heat treatments at two temperatures: stress relief at 1143 K (870 °C) or homogenization at 1423 K (1150 °C).

9.
Comput Mater Sci ; 125: 188-196, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28260838

RESUMO

Thermodynamic data are needed for all kinds of simulations of materials processes. Thermodynamics determines the set of stable phases and also provides chemical potentials, compositions and driving forces for nucleation of new phases and phase transformations. Software to simulate materials properties needs accurate and consistent thermodynamic data to predict metastable states that occur during phase transformations. Due to long calculation times thermodynamic data are frequently pre-calculated into "lookup tables" to speed up calculations. This creates additional uncertainties as data must be interpolated or extrapolated and conditions may differ from those assumed for creating the lookup table. Speed and accuracy requires that thermodynamic software is fully parallelized and the Open-Calphad (OC) software is the first thermodynamic software supporting this feature. This paper gives a brief introduction to computational thermodynamics and introduces the basic features of the OC software and presents four different application examples to demonstrate its versatility.

10.
Artigo em Inglês | MEDLINE | ID: mdl-31555014
11.
J Phase Equilibria Diffus ; 37(1): 1, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28596715
12.
High Temp High Press ; 49(1-2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071299

RESUMO

Computational methods have become indispensable tools for efficient development and processing of new materials and have led to the new discipline of integrated computational materials engineering (ICME). The CALPHAD (calculation of phase diagrams) method has been identified as one of the pillars of ICME. The CALPHAD method, originally developed to model thermodynamic properties and phase diagrams, uses extrapolation methods for the functions of binary and ternary systems that enable the calculation of the properties of higher order systems. The CALPHAD functions are built to a large extent on available experimental data for these binary and ternary systems. To ensure reliability of the results from CALPHAD calculations, it is necessary to critically evaluate the experimental data that are being used for developing the CALPHAD functions. This review presents a brief overview of the CALPHAD method and its models, summarizes the data that are needed and the criteria that need to be applied for the evaluation of these data.

13.
J Wash Acad Sci ; 104(4): 31-78, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-34194119

RESUMO

Motivated by the need for flexible, intuitive, reusable, and normalized terminology for guiding search and building ontologies, we present a general approach for generating sets of such terminologies from natural language documents. The terms that this approach generates are root- and rule-based terms, generated by a series of rules designed to be flexible, to evolve, and, perhaps most important, to protect against ambiguity and standardize semantically similar but syntactically distinct phrases to a normal form. This approach combines several linguistic and computational methods that can be automated with the help of training sets to quickly and consistently extract normalized terms. We discuss how this can be extended as natural language technologies improve and how the strategy applies to common use-cases such as search, document entry and archiving, and identifying, tracking, and predicting scientific and technological trends.

14.
Integr Mater Manuf Innov ; 6(3): 229-248, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31976208

RESUMO

A computational framework is proposed that enables the integration of experimental and computational data, a variety of user-selected models, and a computer algorithm to direct a design optimization. To demonstrate this framework, a sample design of a ternary Ni-Al-Cr alloy with a high work-to-necking ratio is presented. This design example illustrates how CALPHAD phase-based, composition and temperature-dependent phase equilibria calculations and precipitation models are coupled with models for elastic and plastic deformation to calculate the stress-strain curves. A genetic algorithm then directs the search within a specific set of composition and processing constraints for the ideal composition and processing profile to optimize the mechanical properties. The initial demonstration of the framework provides a potential solution to initiate the material design process in a large space of composition and processing conditions. This framework can also be used in similar material systems or adapted for other material classes.

15.
Tecnol Metal Mater Min ; 13(1): 3-15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27330879

RESUMO

Successful design of materials and manufacturing processes requires the availability of reliable materials data. Commercial alloys usually contain a large number of elements, and the needed data for the design of new materials and processes are rarely available. The CALPHAD (CALculation of PHAse Diagrams) method enables the development of thermodynamic and property databases, that in conjunction with extrapolation methods of the descriptions of binary and ternary systems to higher-order systems, allow the calculation of data for higher-order systems. The results obtained from CALPHAD calculations have been shown to be invaluable in the design of new materials. This review presents an overview of the CALPHAD method, software tools and databases and gives examples of its application.


Projeto bem sucedido de materiais e processos de fabricação exige a disponibilidade de dados fiáveis materiais. Ligas comerciais geralmente contêm um grande número de elementos, e os dados necessários para a concepção de novos materiais e processos raramente estão disponíveis. O CALPHAD (cálculo da fase Diagramas) método permite o desenvolvimento de bases de dados termodinâmicos e de propriedade, que em conjunto com métodos de extrapolação das descrições de sistemas binários e ternários aos sistemas de ordem superior, permitir o cálculo de dados para sistemas de ordem superior. Os resultados obtidos a partir de cálculos CALPHAD foram mostrados para ser valiosa para a concepção de novos materiais. Esta revisão apresenta uma visão geral do método CALPHAD, ferramentas de software e bancos de dados e dá exemplos de sua aplicação.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA