Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37665950

RESUMO

BACKGROUND: Cassava utilization for food and/or industrial products depends on inherent properties of root dry matter content (DMC) and the starch fraction of amylose content (AC). Accordingly, in the present study, near-infrared reflectance spectroscopy (NIRS) models were developed to aid breeding and selection of DMC and AC as critical industrial traits taking care of root sample preparation and cassava germplasm diversity available in Uganda. RESULTS: Upon undertaking calibrations and cross-validations, best models were adopted for validation. DMC in calibration samples ranged from 20 to 45 g 100g-1 , whereas, for amylose content, it ranged from 14 to 33 g 100g-1 . In the validation set, average DMC was 29.5 g 100g-1 , whereas, for amylose content, it was 24.64 g 100g-1 . For DMC, a modified partial least square regression model had regression coefficients (R2 ) of 0.98 and 0.96, respectively, in the calibration and validation set. These were also associated with low bias (-0.018) and ratio of performance deviation that ranged from 4.7 to 5.0. In addition, standard error of prediction values ranged from 0.9 g 100g-1 to 1.06 g 100g-1 . For AC, the regression coefficient was 0.91 for the calibration set and 0.94 for the validation set. A bias equivalent to -0.03 and a ratio of performance deviation of 4.23 were observed. CONCLUSION: These findings confirm the robustness of NIRS in the estimation of dry matter content and amylose content in cassava roots and thus justify its use in routine cassava breeding operations. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Insects ; 14(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37999036

RESUMO

In sub-Saharan Africa, sweetpotato weevils are the major pests of cultivated sweetpotato, causing estimated losses of between 60% and 100%, primarily during dry spells. The predominantly cryptic feeding behavior of Cylas spp. within their roots makes their control difficult, thus, host plant resistance is one of the most promising lines of protection against these pests. However, limited progress has been made in cultivar breeding for weevil resistance, partly due to the complex hexaploid genome of sweetpotato, which complicates conventional breeding, in addition to the limited number of genotypes with significant levels of resistance for use as sources of resistance. Pollen sterility, cross incompatibility, and poor seed set and germination in sweetpotato are also common challenges in improving weevil resistance. The accurate phenotyping of sweetpotato weevil resistance to enhance the efficiency of selection has been equally difficult. Genomics-assisted breeding, though in its infancy stages in sweetpotato, has a potential application in overcoming some of these barriers. However, it will require the development of more genomic infrastructure, particularly single-nucleotide polymorphism markers (SNPs) and robust next-generation sequencing platforms, together with relevant statistical procedures for analyses. With the recent advances in genomics, we anticipate that genomic breeding for sweetpotato weevil resistance will be expedited in the coming years. This review sheds light on Uganda's efforts, to date, to breed against the Cylas puncticollis (Boheman) and Cylas brunneus (Fabricius) species of African sweetpotato weevil.

3.
Antioxidants (Basel) ; 11(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290590

RESUMO

Sweetpotato storage roots, peeled and unpeeled, of varying flesh colours (white, cream, yellow, pale orange, deep orange, and purple) were spectrophotometrically evaluated for their bioactive compounds and antioxidant activities. Roots were boiled, steamed, baked, fried, or microwaved. The unpeeled roots had relatively higher (p < 0.001) bioactive compounds and antioxidant activities than the peeled ones. All cooking methods increased phenolic compounds, flavonoids, and tannins in all genotypes. Significant losses of total carotenoids occurred with all cooking methods (ranging from 24.18 to 172.76 µg/g in raw sweetpotatoes vs. 10.06 to 118.17 µg/g in cooked ones; p < 0.001), except the deep-orange-fleshed genotype, in which frying slightly increased carotenoids from 269.81 to 304.74 µg/g. Microwaving retained 69% vitamin C in the cream-fleshed one, the highest among the cooking methods. Anthocyanins decreased with baking and frying in the purple-fleshed one but increased with other methods; microwaving being highest at 13.9% (17.43 mg/g). While the 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid antioxidant activity decreased with all cooking techniques in some genotypes, ferricyanide-reducing antioxidant potential increased. The retention of bioactive compounds in sweetpotato storage roots depends on the processing method. Thus, to obtain the most health benefits, consumers should use different cooking methods but retain the peels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA