Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 23(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35008812

RESUMO

Retinal neurodegeneration is predominantly reported as the apoptosis or impaired function of the photoreceptors. Retinal degeneration is a major causative factor of irreversible vision loss leading to blindness. In recent years, retinal degenerative diseases have been investigated and many genes and genetic defects have been elucidated by many of the causative factors. An enormous amount of research has been performed to determine the pathogenesis of retinal degenerative conditions and to formulate the treatment modalities that are the critical requirements in this current scenario. Encouraging results have been obtained using gene therapy. We provide a narrative review of the various studies performed to date on the role of inflammation in human retinal degenerative diseases such as age-related macular degeneration, inherited retinal dystrophies, retinitis pigmentosa, Stargardt macular dystrophy, and Leber congenital amaurosis. In addition, we have highlighted the pivotal role of various inflammatory mechanisms in the progress of retinal degeneration. This review also offers an assessment of various therapeutic approaches, including gene-therapies and stem-cell-based therapies, for degenerative retinal diseases.


Assuntos
Inflamação/patologia , Degeneração Neural/patologia , Degeneração Retiniana/patologia , Humanos , Interleucina-1/metabolismo , Modelos Biológicos , Degeneração Neural/complicações , Degeneração Neural/terapia , Estresse Oxidativo , Degeneração Retiniana/complicações , Degeneração Retiniana/terapia
2.
Biomedicines ; 12(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38672182

RESUMO

Tumor angiogenesis, the formation of new blood vessels within the tumor microenvironment, is considered a hallmark of cancer progression and represents a crucial target for therapeutic intervention. The tumor microenvironment is characterized by a complex interplay between proangiogenic and antiangiogenic factors, regulating the vascularization necessary for tumor growth and metastasis. The study of angiogenesis involves a spectrum of techniques, spanning from biomarker assessment to advanced imaging modalities. This comprehensive review aims to provide insights into the molecular intricacies, regulatory dynamics, and clinical implications of tumor angiogenesis. By delving into these aspects, we gain a deeper understanding of the processes driving vascularization in tumors, paving the way for the development of novel and effective antiangiogenic therapies in the fight against cancer.

3.
Neural Regen Res ; 18(3): 513-518, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36018156

RESUMO

Vision is an ability that depends on the precise structure and functioning of the retina. Any kind of stress or injury can disrupt the retinal architecture and leads to vision impairment, vision loss, and blindness. Immune system and immune response function maintain homeostasis in the microenvironment. Several genetic, metabolic, and environmental factors may alter retinal homeostasis, and these events may initiate various inflammatory cascades. The prolonged inflammatory state may contribute to the initiation and development of retinal disorders such as glaucoma, age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa, which pose a threat to vision. In the current review, we attempted to provide sufficient evidence on the role of inflammation in these retinal disorders. Moreover, this review paves the way to focus on therapeutic targets of the disease, which are found to be promising.

4.
Bioengineering (Basel) ; 10(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36671648

RESUMO

Cell signaling is a fundamental process that enables cells to survive under various ecological and environmental contexts and imparts tolerance towards stressful conditions. The basic machinery for cell signaling includes a receptor molecule that senses and receives the signal. The primary form of the signal might be a hormone, light, an antigen, an odorant, a neurotransmitter, etc. Similarly, heterotrimeric G-proteins principally provide communication from the plasma membrane G-protein-coupled receptors (GPCRs) to the inner compartments of the cells to control various biochemical activities. G-protein-coupled signaling regulates different physiological functions in the targeted cell types. This review article discusses G-proteins' signaling and regulation functions and their physiological relevance. In addition, we also elaborate on the role of G-proteins in several cardiovascular diseases, such as myocardial ischemia, hypertension, atherosclerosis, restenosis, stroke, and peripheral artery disease.

5.
Rev Port Cardiol ; 42(11): 917-924, 2023 11.
Artigo em Inglês, Português | MEDLINE | ID: mdl-37414337

RESUMO

Peripartum cardiomyopathy is a rare type of heart failure manifesting towards the end of pregnancy or in the months following delivery, in the absence of any other cause of heart failure. There is a wide range of incidence across countries reflecting different population demographics, uncertainty over definitions and under-reporting. Race, ethnicity, multiparity and advanced maternal age are considered important risk factors for the disease. Its etiopathogenesis is incompletely understood and is likely multifactorial, including hemodynamic stresses of pregnancy, vasculo-hormonal factors, inflammation, immunology and genetics. Affected women present with heart failure secondary to reduced left ventricular systolic function (LVEF <45%) and often with associated phenotypes such as LV dilatation, biatrial dilatation, reduced systolic function, impaired diastolic function, and increased pulmonary pressure. Electrocardiography, echocardiography, magnetic resonance imaging, endomyocardial biopsy, and certain blood biomarkers aid in diagnosis and management. Treatment for peripartum cardiomyopathy depends on the stage of pregnancy or postpartum, disease severity and whether the woman is breastfeeding. It includes standard pharmacological therapies for heart failure, within the safety restrictions for pregnancy and lactation. Targeted therapies such as bromocriptine have shown promise in early, small studies, with large definitive trials currently underway. Failure of medical interventions may require mechanical support and transplantation in severe cases. Peripartum cardiomyopathy carries a high mortality rate of up to 10% and a high risk of relapse in subsequent pregnancies, but over half of women present normalization of LV function within a year of diagnosis.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Complicações Cardiovasculares na Gravidez , Transtornos Puerperais , Gravidez , Feminino , Humanos , Período Periparto , Cardiomiopatias/diagnóstico , Cardiomiopatias/etiologia , Cardiomiopatias/terapia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/terapia , Prognóstico , Ecocardiografia , Transtornos Puerperais/diagnóstico , Transtornos Puerperais/etiologia , Transtornos Puerperais/terapia , Complicações Cardiovasculares na Gravidez/terapia , Complicações Cardiovasculares na Gravidez/tratamento farmacológico
6.
Cells ; 12(5)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36899839

RESUMO

Angiogenesis, neovascularization, and vascular remodeling are highly dynamic processes, where endothelial cell-cell adhesion within the vessel wall controls a range of physiological processes, such as growth, integrity, and barrier function. The cadherin-catenin adhesion complex is a key contributor to inner blood-retinal barrier (iBRB) integrity and dynamic cell movements. However, the pre-eminent role of cadherins and their associated catenins in iBRB structure and function is not fully understood. Using a murine model of oxygen-induced retinopathy (OIR) and human retinal microvascular endothelial cells (HRMVECs), we try to understand the significance of IL-33 on retinal endothelial barrier disruption, leading to abnormal angiogenesis and enhanced vascular permeability. Using electric cell-substrate impedance sensing (ECIS) analysis and FITC-dextran permeability assay, we observed that IL-33 at a 20 ng/mL concentration induced endothelial-barrier disruption in HRMVECs. The adherens junction (AJs) proteins play a prominent role in the selective diffusion of molecules from the blood to the retina and in maintaining retinal homeostasis. Therefore, we looked for the involvement of adherens junction proteins in IL-33-mediated endothelial dysfunction. We observed that IL-33 induces α-catenin phosphorylation at serine/threonine (Ser/Thr) residues in HRMVECs. Furthermore, mass-spectroscopy (MS) analysis revealed that IL-33 induces the phosphorylation of α-catenin at Thr654 residue in HRMVECs. We also observed that PKCµ/PRKD1-p38 MAPK signaling regulates IL-33-induced α-catenin phosphorylation and retinal endothelial cell-barrier integrity. Our OIR studies revealed that genetic deletion of IL-33 resulted in reduced vascular leakage in the hypoxic retina. We also observed that the genetic deletion of IL-33 reduced OIR-induced PKCµ/PRKD1-p38 MAPK-α-catenin signaling in the hypoxic retina. Therefore, we conclude that IL-33-induced PKCµ/PRKD1-p38 MAPK-α-catenin signaling plays a significant role in endothelial permeability and iBRB integrity.


Assuntos
Células Endoteliais , Interleucina-33 , Animais , Humanos , Camundongos , alfa Catenina/metabolismo , Caderinas/metabolismo , Células Endoteliais/metabolismo , Interleucina-33/metabolismo , Isquemia/metabolismo , Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosforilação
7.
Commun Biol ; 6(1): 516, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179352

RESUMO

Vascular adhesion molecules play an important role in various immunological disorders, particularly in cancers. However, little is known regarding the role of these adhesion molecules in proliferative retinopathies. We observed that IL-33 regulates VCAM-1 expression in human retinal endothelial cells and that genetic deletion of IL-33 reduces hypoxia-induced VCAM-1 expression and retinal neovascularization in C57BL/6 mice. We found that VCAM-1 via JunB regulates IL-8 promoter activity and expression in human retinal endothelial cells. In addition, our study outlines the regulatory role of VCAM-1-JunB-IL-8 signaling on retinal endothelial cell sprouting and angiogenesis. Our RNA sequencing results show an induced expression of CXCL1 (a murine functional homolog of IL-8) in the hypoxic retina, and intravitreal injection of VCAM-1 siRNA not only decreases hypoxia-induced VCAM-1-JunB-CXCL1 signaling but also reduces OIR-induced sprouting and retinal neovascularization. These findings suggest that VCAM-1-JunB-IL-8 signaling plays a crucial role in retinal neovascularization, and its antagonism might provide an advanced treatment option for proliferative retinopathies.


Assuntos
Neovascularização Retiniana , Animais , Humanos , Camundongos , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Interleucina-33/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Hipóxia/metabolismo , Quimiocina CXCL1/metabolismo , Fatores de Transcrição/metabolismo
8.
Immun Inflamm Dis ; 11(9): e1020, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37773723

RESUMO

INTRODUCTION: The novel coronavirus infectious disease 2019 (COVID-19) which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a gigantic problem. The lung is the major target organ of SARS-CoV-2 and some of its variants like Delta and Omicron variant adapted in such a way that these variants can significantly damage this vital organ of the body. These variants raised a few eyebrows as the outbreaks have been seen in the vaccinated population. Patients develop severe respiratory illnesses which eventually prove fatal unless treated early. MAIN BODY: Studies have shown that SARS-CoV-2 causes the release of pro-inflammatory cytokines such as interleukin (IL)-6, IL-1ß and tumor necrosis factor (TNF)-α which are mediators of lung inflammation, lung damage, fever, and fibrosis. Additionally, various chemokines have been found to play an important role in the disease progression. A plethora of pro-inflammatory cytokines "cytokine storm" has been observed in severe cases of SARS-CoV-2 infection leading to acute respiratory distress syndrome (ARDS) and pneumonia that may prove fatal. To counteract cytokine storm-inducing lung inflammation, several promising immunomodulatory approaches are being investigated in numerous clinical trials. However, the benefits of using these strategies should outweigh the risks involved as the use of certain immunosuppressive approaches might lead the host susceptible to secondary bacterial infections. CONCLUSION: The present review discusses promising immunomodulatory approaches to manage lung inflammation in COVID-19 cases which may serve as potential therapeutic options in the future and may prove lifesaving.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , SARS-CoV-2 , Citocinas , Interleucina-6
9.
World J Gastroenterol ; 28(46): 6497-6511, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36569271

RESUMO

Colorectal cancer (CRC) is the third most diagnosed cancer and the second leading cause of cancer-related mortality in the United States. Across the globe, people in the age group older than 50 are at a higher risk of CRC. Genetic and environmental risk factors play a significant role in the development of CRC. If detected early, CRC is preventable and treatable. Currently, available screening methods and therapies for CRC treatment reduce the incidence rate among the population, but the micrometastasis of cancer may lead to recurrence. Therefore, the challenge is to develop an alternative therapy to overcome this complication. Nanotechnology plays a vital role in cancer treatment and offers targeted chemotherapies directly and selectively to cancer cells, with enhanced therapeutic efficacy. Additionally, nanotechnology elevates the chances of patient survival in comparison to traditional chemotherapies. The potential of nanoparticles includes that they may be used simultaneously for diagnosis and treatment. These exciting properties of nanoparticles have enticed researchers worldwide to unveil their use in early CRC detection and as effective treatment. This review discusses contemporary methods of CRC screening and therapies for CRC treatment, while the primary focus is on the theranostic approach of nanotechnology in CRC treatment and its prospects. In addition, this review aims to provide knowledge on the advancement of nanotechnology in CRC and as a starting point for researchers to think about new therapeutic approaches using nanotechnology.


Assuntos
Neoplasias Colorretais , Nanopartículas , Humanos , Estados Unidos , Nanotecnologia/métodos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/terapia , Neoplasias Colorretais/epidemiologia , Resultado do Tratamento , Detecção Precoce de Câncer/métodos
10.
Commun Biol ; 5(1): 479, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589941

RESUMO

Pathological retinal neovascularization (NV) is a clinical manifestation of various proliferative retinopathies, and treatment of NV using anti-VEGF therapies is not selective, as it also impairs normal retinal vascular growth and function. Here, we show that genetic deletion or siRNA-mediated downregulation of IL-33 reduces pathological NV in a murine model of oxygen-induced retinopathy (OIR) with no effect on the normal retinal repair. Furthermore, our fluorescent activated cell sorting (FACS) data reveals that the increase in IL-33 expression is in endothelial cells (ECs) of the hypoxic retina and conditional genetic deletion of IL-33 in retinal ECs reduces pathological NV. In vitro studies using human retinal microvascular endothelial cells (HRMVECs) show that IL-33 induces sprouting angiogenesis and requires NFkappaB-mediated Jagged1 expression and Notch1 activation. Our data also suggest that IL-33 enhances de-ubiquitination and stabilization of Notch1 intracellular domain via its interaction with BRCA1-associated protein 1 (BAP1) and Numb in HRMVECs and a murine model of OIR.


Assuntos
Doenças Retinianas , Vitreorretinopatia Proliferativa , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Humanos , Interleucina-33/genética , Interleucina-33/farmacologia , Camundongos , Neovascularização Patológica/patologia , Oxigênio/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Doenças Retinianas/patologia , Vitreorretinopatia Proliferativa/patologia
11.
J Occup Med Toxicol ; 16(1): 14, 2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33865415

RESUMO

BACKGROUND: Pesticide residues in food and environment along with airborne contaminants such as endotoxins pose health risk. Although herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) has been associated with increased risk of lung cancers such as small cell lung cancer (SCLC) among agricultural workers, there are no data on the SCLC signaling pathway upon 2,4-D exposure without LPS or in combination with endotoxin. METHODS: We exposed Swiss albino mice (N = 48) orally to high (9.58 mg kg- 1) and low (5.12 mg kg- 1) dosages of 2,4-D dissolved in corn oil for 90 days followed by E. coli lipopolysaccharide (LPS) or normal saline solution (80 µl/animal). Lung samples and broncho-alveolar fluid (BALF) were subjected to Total histological score (THS) and total leucocyte count (TLC) and differential leucocytes count (DLC) analyses, respectively. We used microarray and bioinformatics tools for transcriptomic analyses and differentially expressed genes were analyzed to predict the top canonical pathways followed by validation of selected genes by qRT-PCR and immunohistochemistry. RESULTS: Total histological score (THS) along with BALF analyses showed lung inflammation following long term dietary exposure to high or low doses of 2,4-D individually or in combination with LPS. Microarray analysis revealed exposure to high dose of 2,4-D without or with LPS upregulated 2178 and 2142 and downregulated 1965 and 1719 genes, respectively (p < 0.05; minimum cut off 1.5 log fold change). The low dose without or with LPS upregulated 2133 and 2054 and downregulated 1838 and 1625 genes, respectively. Bioinformatics analysis showed SCLC as topmost dysregulated pathway along with differential expression of Itgb1, NF-κB1, p53, Cdk6 and Apaf1. Immunohistological and quantitative real time PCR (qRT-PCR) analyses also supported the transcriptomic data. CONCLUSIONS: Taken together, the data show exposures to high and low dose of 2,4-D with/without LPS induced lung inflammation and altered pulmonary transcriptome profile with the involvement of the SCLC pathway. The data from the study provide the insights of the potential damage on lungs caused by 2,4-D and help to better understand the mechanism of this complex relation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA