Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 107(4): 727-742, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32891193

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.


Assuntos
Proteínas de Ligação a DNA/genética , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Mutação , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Sistema Urinário/metabolismo , Anormalidades Urogenitais/genética , Proteínas de Anfíbios/antagonistas & inibidores , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Animais , Estudos de Casos e Controles , Criança , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Família , Feminino , Fatores de Transcrição Forkhead/metabolismo , Heterozigoto , Humanos , Lactente , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Camundongos , Camundongos Knockout , Morfolinos/genética , Morfolinos/metabolismo , Linhagem , Ligação Proteica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Sistema Urinário/anormalidades , Anormalidades Urogenitais/metabolismo , Anormalidades Urogenitais/patologia , Sequenciamento do Exoma , Xenopus
2.
Am J Hum Genet ; 105(6): 1286-1293, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31708116

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first three decades of life, and in utero obstruction to urine flow is a frequent cause of secondary upper urinary tract malformations. Here, using whole-exome sequencing, we identified three different biallelic mutations in CHRNA3, which encodes the α3 subunit of the nicotinic acetylcholine receptor, in five affected individuals from three unrelated families with functional lower urinary tract obstruction and secondary CAKUT. Four individuals from two families have additional dysautonomic features, including impaired pupillary light reflexes. Functional studies in vitro demonstrated that the mutant nicotinic acetylcholine receptors were unable to generate current following stimulation with acetylcholine. Moreover, the truncating mutations p.Thr337Asnfs∗81 and p.Ser340∗ led to impaired plasma membrane localization of CHRNA3. Although the importance of acetylcholine signaling in normal bladder function has been recognized, we demonstrate for the first time that mutations in CHRNA3 can cause bladder dysfunction, urinary tract malformations, and dysautonomia. These data point to a pathophysiologic sequence by which monogenic mutations in genes that regulate bladder innervation may secondarily cause CAKUT.


Assuntos
Doenças do Sistema Nervoso Autônomo/etiologia , Rim/anormalidades , Mutação , Receptores Nicotínicos/genética , Sistema Urinário/anormalidades , Anormalidades Urogenitais/etiologia , Adulto , Doenças do Sistema Nervoso Autônomo/genética , Doenças do Sistema Nervoso Autônomo/patologia , Feminino , Seguimentos , Humanos , Rim/patologia , Masculino , Linhagem , Prognóstico , Sistema Urinário/patologia , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/patologia , Adulto Jovem
3.
Am J Hum Genet ; 104(5): 994-1006, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31051115

RESUMO

Congenital lower urinary-tract obstruction (LUTO) is caused by anatomical blockage of the bladder outflow tract or by functional impairment of urinary voiding. About three out of 10,000 pregnancies are affected. Although several monogenic causes of functional obstruction have been defined, it is unknown whether congenital LUTO caused by anatomical blockage has a monogenic cause. Exome sequencing in a family with four affected individuals with anatomical blockage of the urethra identified a rare nonsense variant (c.2557C>T [p.Arg853∗]) in BNC2, encoding basonuclin 2, tracking with LUTO over three generations. Re-sequencing BNC2 in 697 individuals with LUTO revealed three further independent missense variants in three unrelated families. In human and mouse embryogenesis, basonuclin 2 was detected in lower urinary-tract rudiments. In zebrafish embryos, bnc2 was expressed in the pronephric duct and cloaca, analogs of the mammalian lower urinary tract. Experimental knockdown of Bnc2 in zebrafish caused pronephric-outlet obstruction and cloacal dilatation, phenocopying human congenital LUTO. Collectively, these results support the conclusion that variants in BNC2 are strongly implicated in LUTO etiology as a result of anatomical blockage.


Assuntos
Aberrações Cromossômicas , Proteínas de Ligação a DNA/genética , Doenças Fetais/genética , Mutação , Obstrução do Colo da Bexiga Urinária/congênito , Obstrução do Colo da Bexiga Urinária/genética , Adulto , Animais , Criança , Feminino , Doenças Fetais/patologia , Genes Dominantes , Idade Gestacional , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem , Gravidez , Obstrução do Colo da Bexiga Urinária/patologia , Peixe-Zebra
4.
Genet Med ; 24(2): 307-318, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906515

RESUMO

PURPOSE: Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the leading cause of chronic kidney disease in children. In total, 174 monogenic causes of isolated or syndromic CAKUT are known. However, syndromic features may be overlooked when the initial clinical diagnosis of CAKUT is made. We hypothesized that the yield of a molecular genetic diagnosis by exome sequencing (ES) can be increased by applying reverse phenotyping, by re-examining the case for signs/symptoms of the suspected clinical syndrome that results from the genetic variant detected by ES. METHODS: We conducted ES in an international cohort of 731 unrelated families with CAKUT. We evaluated ES data for variants in 174 genes, in which variants are known to cause isolated or syndromic CAKUT. In cases in which ES suggested a previously unreported syndromic phenotype, we conducted reverse phenotyping. RESULTS: In 83 of 731 (11.4%) families, we detected a likely CAKUT-causing genetic variant consistent with an isolated or syndromic CAKUT phenotype. In 19 of these 83 families (22.9%), reverse phenotyping yielded syndromic clinical findings, thereby strengthening the genotype-phenotype correlation. CONCLUSION: We conclude that employing reverse phenotyping in the evaluation of syndromic CAKUT genes by ES provides an important tool to facilitate molecular genetic diagnostics in CAKUT.


Assuntos
Sistema Urinário , Anormalidades Urogenitais , Alelos , Exoma/genética , Humanos , Rim/anormalidades , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral
5.
J Am Soc Nephrol ; 32(3): 580-596, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33593823

RESUMO

BACKGROUND: Galloway-Mowat syndrome (GAMOS) is characterized by neurodevelopmental defects and a progressive nephropathy, which typically manifests as steroid-resistant nephrotic syndrome. The prognosis of GAMOS is poor, and the majority of children progress to renal failure. The discovery of monogenic causes of GAMOS has uncovered molecular pathways involved in the pathogenesis of disease. METHODS: Homozygosity mapping, whole-exome sequencing, and linkage analysis were used to identify mutations in four families with a GAMOS-like phenotype, and high-throughput PCR technology was applied to 91 individuals with GAMOS and 816 individuals with isolated nephrotic syndrome. In vitro and in vivo studies determined the functional significance of the mutations identified. RESULTS: Three biallelic variants of the transcriptional regulator PRDM15 were detected in six families with proteinuric kidney disease. Four families with a variant in the protein's zinc-finger (ZNF) domain have additional GAMOS-like features, including brain anomalies, cardiac defects, and skeletal defects. All variants destabilize the PRDM15 protein, and the ZNF variant additionally interferes with transcriptional activation. Morpholino oligonucleotide-mediated knockdown of Prdm15 in Xenopus embryos disrupted pronephric development. Human wild-type PRDM15 RNA rescued the disruption, but the three PRDM15 variants did not. Finally, CRISPR-mediated knockout of PRDM15 in human podocytes led to dysregulation of several renal developmental genes. CONCLUSIONS: Variants in PRDM15 can cause either isolated nephrotic syndrome or a GAMOS-type syndrome on an allelic basis. PRDM15 regulates multiple developmental kidney genes, and is likely to play an essential role in renal development in humans.


Assuntos
Proteínas de Ligação a DNA/genética , Hérnia Hiatal/genética , Microcefalia/genética , Mutação de Sentido Incorreto , Nefrose/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Pré-Escolar , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/deficiência , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Modelos Moleculares , Síndrome Nefrótica/genética , Podócitos/metabolismo , Polimorfismo de Nucleotídeo Único , Pronefro/embriologia , Pronefro/metabolismo , Estabilidade Proteica , Fatores de Transcrição/química , Fatores de Transcrição/deficiência , Xenopus laevis/embriologia , Xenopus laevis/genética , Dedos de Zinco/genética
6.
Am J Med Genet A ; 185(12): 3784-3792, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34338422

RESUMO

The acronym VATER/VACTERL refers to the rare nonrandom association of the following component features (CFs): vertebral defects (V), anorectal malformations (ARM) (A), cardiac anomalies (C), tracheoesophageal fistula with or without esophageal atresia (TE), renal malformations (R), and limb anomalies (L). For the clinical diagnosis, the presence of at least three CFs is required, individuals presenting with only two CFs have been categorized as VATER/VACTERL-like. The majority of VATER/VACTERL individuals displays a renal phenotype. Hitherto, variants in FGF8, FOXF1, HOXD13, LPP, TRAP1, PTEN, and ZIC3 have been associated with the VATER/VACTERL association; however, large-scale re-sequencing could only confirm TRAP1 and ZIC3 as VATER/VACTERL disease genes, both associated with a renal phenotype. In this study, we performed exome sequencing in 21 individuals and their families with a renal VATER/VACTERL or VATER/VACTERL-like phenotype to identify potentially novel genetic causes. Exome analysis identified biallelic and X-chromosomal hemizygous potentially pathogenic variants in six individuals (29%) in B9D1, FREM1, ZNF157, SP8, ACOT9, and TTLL11, respectively. The online tool GeneMatcher revealed another individual with a variant in ZNF157. Our study suggests six biallelic and X-chromosomal hemizygous VATER/VACTERL disease genes implicating all six genes in the expression of human renal malformations.


Assuntos
Malformações Anorretais/genética , Atresia Esofágica/genética , Predisposição Genética para Doença , Cardiopatias/genética , Fístula Traqueoesofágica/genética , Malformações Anorretais/complicações , Malformações Anorretais/patologia , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/genética , Atresia Esofágica/complicações , Atresia Esofágica/patologia , Feminino , Genes Ligados ao Cromossomo X/genética , Estudos de Associação Genética , Proteínas de Choque Térmico HSP90/genética , Cardiopatias/complicações , Cardiopatias/patologia , Hemizigoto , Proteínas de Homeodomínio/genética , Humanos , Rim/anormalidades , Masculino , Receptores de Interleucina/genética , Fístula Traqueoesofágica/complicações , Fístula Traqueoesofágica/patologia , Fatores de Transcrição/genética , Sequenciamento do Exoma
7.
Genet Med ; 22(10): 1673-1681, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32475988

RESUMO

PURPOSE: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in childhood and adolescence. We aim to identify novel monogenic causes of CAKUT. METHODS: Exome sequencing was performed in 550 CAKUT-affected families. RESULTS: We discovered seven FOXC1 heterozygous likely pathogenic variants within eight CAKUT families. These variants are either never reported, or present in <5 alleles in the gnomAD database with ~141,456 controls. FOXC1 is a causal gene for Axenfeld-Rieger syndrome type 3 and anterior segment dysgenesis 3. Pathogenic variants in FOXC1 have not been detected in patients with CAKUT yet. Interestingly, mouse models for Foxc1 show severe CAKUT phenotypes with incomplete penetrance and variable expressivity. The FOXC1 variants are enriched in the CAKUT cohort compared with the control. Genotype-phenotype correlations showed that Axenfeld-Rieger syndrome or anterior segment dysgenesis can be caused by both truncating and missense pathogenic variants, and the missense variants are located at the forkhead domain. In contrast, for CAKUT, there is no truncating pathogenic variant, and all variants except one are located outside the forkhead domain. CONCLUSION: We thereby expanded the phenotype of FOXC1 pathogenic variants toward involvement of CAKUT, which can potentially be explained by allelism.


Assuntos
Anormalidades do Olho , Sistema Urinário , Criança , Fatores de Transcrição Forkhead/genética , Heterozigoto , Humanos , Rim , Fenótipo
8.
Kidney Int ; 95(4): 914-928, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30773290

RESUMO

Approximately 500 monogenic causes of chronic kidney disease (CKD) have been identified, mainly in pediatric populations. The frequency of monogenic causes among adults with CKD has been less extensively studied. To determine the likelihood of detecting monogenic causes of CKD in adults presenting to nephrology services in Ireland, we conducted whole exome sequencing (WES) in a multi-centre cohort of 114 families including 138 affected individuals with CKD. Affected adults were recruited from 78 families with a positive family history, 16 families with extra-renal features, and 20 families with neither a family history nor extra-renal features. We detected a pathogenic mutation in a known CKD gene in 42 of 114 families (37%). A monogenic cause was identified in 36% of affected families with a positive family history of CKD, 69% of those with extra-renal features, and only 15% of those without a family history or extra-renal features. There was no difference in the rate of genetic diagnosis in individuals with childhood versus adult onset CKD. Among the 42 families in whom a monogenic cause was identified, WES confirmed the clinical diagnosis in 17 (40%), corrected the clinical diagnosis in 9 (22%), and established a diagnosis for the first time in 16 families referred with CKD of unknown etiology (38%). In this multi-centre study of adults with CKD, a molecular genetic diagnosis was established in over one-third of families. In the evolving era of precision medicine, WES may be an important tool to identify the cause of CKD in adults.


Assuntos
Sequenciamento do Exoma , Predisposição Genética para Doença , Testes Genéticos/métodos , Insuficiência Renal Crônica/genética , Adolescente , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Exoma/genética , Feminino , Humanos , Irlanda , Rim , Masculino , Anamnese , Pessoa de Meia-Idade , Mutação , Linhagem , Medicina de Precisão , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/terapia , Adulto Jovem
9.
J Am Soc Nephrol ; 29(9): 2348-2361, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30143558

RESUMO

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most prevalent cause of kidney disease in the first three decades of life. Previous gene panel studies showed monogenic causation in up to 12% of patients with CAKUT. METHODS: We applied whole-exome sequencing to analyze the genotypes of individuals from 232 families with CAKUT, evaluating for mutations in single genes known to cause human CAKUT and genes known to cause CAKUT in mice. In consanguineous or multiplex families, we additionally performed a search for novel monogenic causes of CAKUT. RESULTS: In 29 families (13%), we detected a causative mutation in a known gene for isolated or syndromic CAKUT that sufficiently explained the patient's CAKUT phenotype. In three families (1%), we detected a mutation in a gene reported to cause a phenocopy of CAKUT. In 15 of 155 families with isolated CAKUT, we detected deleterious mutations in syndromic CAKUT genes. Our additional search for novel monogenic causes of CAKUT in consanguineous and multiplex families revealed a potential single, novel monogenic CAKUT gene in 19 of 232 families (8%). CONCLUSIONS: We identified monogenic mutations in a known human CAKUT gene or CAKUT phenocopy gene as the cause of disease in 14% of the CAKUT families in this study. Whole-exome sequencing provides an etiologic diagnosis in a high fraction of patients with CAKUT and will provide a new basis for the mechanistic understanding of CAKUT.


Assuntos
Sequenciamento do Exoma/métodos , Predisposição Genética para Doença/epidemiologia , Linhagem , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Animais , Humanos , Incidência , Rim/anormalidades , Camundongos , Fenótipo , Prognóstico , Medição de Risco , Sensibilidade e Especificidade , Distribuição por Sexo , Sistema Urinário/anormalidades , Anormalidades Urogenitais/epidemiologia , Refluxo Vesicoureteral/epidemiologia
10.
Eur Urol Open Sci ; 44: 106-112, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36185583

RESUMO

Background: Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease among children and adults younger than 30 yr. In our previous study, whole-exome sequencing (WES) identified a known monogenic cause of isolated or syndromic CAKUT in 13% of families with CAKUT. However, WES has limitations and detection of copy number variations (CNV) is technically challenging, and CNVs causative of CAKUT have previously been detected in up to 16% of cases. Objective: To detect CNVs causing CAKUT in this WES cohort and increase the diagnostic yield. Design setting and participants: We performed a genome-wide single nucleotide polymorphism (SNP)-based CNV analysis on the same CAKUT cohort for whom WES was previously conducted. Outcome measurements and statistical analysis: We evaluated and classified the CNVs using previously published predefined criteria. Results and limitations: In a cohort of 170 CAKUT families, we detected a pathogenic CNV known to cause CAKUT in nine families (5.29%, 9/170). There were no competing variants on genome-wide CNV analysis or WES analysis. In addition, we identified novel likely pathogenic CNVs that may cause a CAKUT phenotype in three of the 170 families (1.76%). Conclusions: CNV analysis in this cohort of 170 CAKUT families previously examined via WES increased the rate of diagnosis of genetic causes of CAKUT from 13% on WES to 18% on WES + CNV analysis combined. We also identified three candidate loci that may potentially cause CAKUT. Patient summary: We conducted a genetics study on families with congenital anomalies of the kidney and urinary tract (CAKUT). We identified gene mutations that can explain CAKUT symptoms in 5.29% of the families, which increased the percentage of genetic causes of CAKUT to 18% from a previous study, so roughly one in five of our patients with CAKUT had a genetic cause. These analyses can help patients with CAKUT and their families in identifying a possible genetic cause.

11.
Birth Defects Res ; 111(10): 591-597, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30887706

RESUMO

BACKGROUND: The VATER/VACTERL association refers to the nonrandom co-occurrence of at least three of the following component features (CFs): vertebral defects (V), anorectal malformations (ARM) (A), cardiac defects (C), tracheoesophageal fistula with or without esophageal atresia (TE), renal malformations (R), and limb defects (L). Patients presenting with two CFs have been termed VATER/VACTERL-like phenotypes. METHODS: We surveyed the exome for recessive disease variants in three affected sib-pairs. Sib-pair 971 consisted of two brothers with ARM and additional hydronephrosis in one brother. Sib-pair 1098 consisted of two sisters with ARM. In family 1346, the daughter presented with ARM and additional hypoplasia of both small fingers and ankyloses. Her brother presented with unilateral isolated radial hypoplasia. Sib-pairs 971 and 1346 resembled a VATER/VACTERL-like phenotype. RESULTS: We detected a novel maternally inherited missense variant (c.1340G > T) and a rare paternally inherited deletion of the trans-allele in HSPA6 in both siblings of family 1346. HSPA6 belongs to the heat shock protein (HSP) 70 family. Re-sequencing of HSPA6 in 167 patients with VATER/VACTERL and VATER/VACTERL-like phenotypes did not reveal any additional bi-allelic variants. CONCLUSIONS: Until now, only TNF-receptor associated protein 1 (TRAP1) had been reported as an autosomal recessive disease-gene for the VATER/VACTERL association. TRAP1 belongs to the heat shock protein 90 family (HSP90). Both Hsp70 and Hsp90 genes have been shown to be important embryonic drivers in the formation of mouse embryonic forelimb tissue. Our results suggest HSPA6 as a new candidate gene in VATER/VACTERL-like phenotypes.


Assuntos
Canal Anal/anormalidades , Anus Imperfurado/genética , Esôfago/anormalidades , Proteínas de Choque Térmico HSP70/genética , Cardiopatias Congênitas/genética , Rim/anormalidades , Deformidades Congênitas dos Membros/genética , Rádio (Anatomia)/anormalidades , Coluna Vertebral/anormalidades , Traqueia/anormalidades , Anormalidades Múltiplas/genética , Alelos , Malformações Anorretais/genética , Anus Imperfurado/diagnóstico , Atresia Esofágica , Exoma , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/genética , Cardiopatias Congênitas/diagnóstico , Humanos , Deformidades Congênitas dos Membros/diagnóstico , Masculino , Mutação , Fenótipo , Irmãos , Fístula Traqueoesofágica
12.
Mol Med Rep ; 17(2): 3200-3205, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29257230

RESUMO

Branchio­otic (BO) syndrome is a clinically and genetically heterogeneous disorder that presents with variable branchial arch and otic anomalies. Dominant mutations in the human homologues of the Drosophila eyes absent (EYA1) gene, and the Drosophila sine oculis homeobox 1 and 5 (SIX1 and SIX5, respectively) genes have been causally associated with BO syndrome. Esophageal atresia (EA), with or without tracheo­esophageal fistula (TEF), is the most common type of malformation of the upper digestive tract. To date, its causes are poorly understood. The present study investigated a family with three affected members who all presented with classic BO associated symptoms. Notably, the index patient also presented with the most common EA/TEF subtype type 3b. Whole exome sequencing (WES) was performed in the index patient, and prioritized genetic variants and their segregation in the family were analyzed by Sanger sequencing. WES demonstrated a known disease­causing heterozygous EYA1 splice variant in the patient, as well as his sister and mother; all of whom were affected with BO syndrome. A further GLI family zinc finger 3 (GLI3) splice variant of unknown significance, inherited from the unaffected father, was also detected in the index patient. EYA1 and GLI3 are involved in the Sonic Hedgehog transcriptional network and GLI3 seems to be involved in human foregut malformations. Therefore, one may hypothesize a digenic inheritance model involving EYA1 and GLI3, where the effect of the GLI3 variant observed here only emerges in the background of the EYA1 defect.


Assuntos
Síndrome Brânquio-Otorrenal/patologia , Atresia Esofágica/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética , Proteína Gli3 com Dedos de Zinco/genética , Síndrome Brânquio-Otorrenal/complicações , Síndrome Brânquio-Otorrenal/genética , Análise Mutacional de DNA , Atresia Esofágica/complicações , Atresia Esofágica/genética , Feminino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Heterozigoto , Humanos , Masculino , Linhagem , Polimorfismo Genético , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Splicing de RNA , Sequenciamento do Exoma
13.
J Pediatr Genet ; 6(3): 169-173, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28794909

RESUMO

A genome-wide association study and meta-analysis identified ISL1 as the first genome-wide significant susceptibility gene for classic bladder exstrophy (CBE). A short interspersed repetitive element (SINE), first detected in lobe-finned fishes (LF-SINE), was shown to drive Isl1 expression in embryonic mouse genital eminence. Hence, we assumed this enhancer a conclusive target for mutations associated with CBE formation and analyzed a cohort of 200 CBE patients. Although we identified two enhancer variants in five CBE patients, their clinical significance seems unlikely, implying that sequence variants in the ISL1 LF-SINE enhancer are not frequently associated with CBE.

14.
Birth Defects Res ; 109(13): 1063-1069, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28605140

RESUMO

BACKGROUND: The acronym VATER/VACTERL refers to the rare nonrandom association of the following component features (CF): vertebral defects (V), anorectal malformations (A), cardiac defects (C), tracheoesophageal fistula with or without esophageal atresia, renal malformations (R), and limb defects (L). Patients presenting with at least three CFs are diagnosed as having VATER/VACTERL association while patients presenting with only two CFs are diagnosed as having VATER/VACTERL-like phenotypes. Recently, rare causative copy number variations (CNVs) have been identified in patients with VATER/VACTERL association and VATER/VACTERL-like phenotypes. METHODS: To detect further causative CNVs we performed array based molecular karyotyping in 75 VATER/VACTERL and 40 VATER/VACTERL-like patients. RESULTS: Following the application of stringent filter criteria, we identified 13 microdeletions and seven microduplications in 20 unrelated patients all of which were absent in 1,307 healthy inhouse controls (n < 0.0008). Among these, microdeletion at 17q12 was confirmed to be de novo. Three microdeletions at 5q23.1, 16q23.3, 22q11.21, and one microduplication at 10q11.21 were all absent in the available parent. Microdeletion of chromosomal region 22q11.21 was previously found in VATER/VACTERL patients rendering it to be causative in our patient. The remaining 15 CNVs were inherited from a healthy parent. CONCLUSION: In two of 115 patients' causative CNVs were found (2%). The remaining identified rare CNVs represent candidates for further evaluation. Rare inherited CNVs may constitute modifiers of, or contributors to, multifactorial VATER/VACTERL or VATER/VACTERL-like phenotypes. Birth Defects Research 109:1063-1069, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Anus Imperfurado/genética , Esôfago/anormalidades , Cardiopatias Congênitas/genética , Rádio (Anatomia)/anormalidades , Coluna Vertebral/anormalidades , Traqueia/anormalidades , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Adulto , Canal Anal/anormalidades , Animais , Malformações Anorretais/genética , Anus Imperfurado/complicações , Anus Imperfurado/metabolismo , Variações do Número de Cópias de DNA , Esôfago/metabolismo , Feminino , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/metabolismo , Humanos , Cariótipo , Cariotipagem , Masculino , Fenótipo , Rádio (Anatomia)/metabolismo , Coluna Vertebral/metabolismo , Traqueia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA