Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 23(2): 609-617, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38158558

RESUMO

Fast Photochemical Oxidation of Proteins (FPOP) is a promising technique for studying protein structure and dynamics. The quality of insight provided by FPOP depends on the reliability of the determination of the modification site. This study investigates the performance of two search engines, Mascot and PEAKS, for the data processing of FPOP analyses. Comparison of Mascot and PEAKS of the hemoglobin--haptoglobin Bruker timsTOF data set (PXD021621) revealed greater consistency in the Mascot identification of modified peptides, with around 26% of the IDs being mutual for all three replicates, compared to approximately 22% for PEAKS. The intersection between Mascot and PEAKS results revealed a limited number (31%) of shared modified peptides. Principal Component Analysis (PCA) using the peptide-spectrum match (PSM) score, site probability, and peptide intensity was applied to evaluate the results, and the analyses revealed distinct clusters of modified peptides. Mascot showed the ability to assess confident site determination, even with lower PSM scores. However, high PSM scores from PEAKS did not guarantee a reliable determination of the modification site. Fragmentation coverage of the modification position played a crucial role in Mascot assignments, while the AScore localizations from PEAKS often become ambiguous because the software employs MS/MS merging.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Peptídeos/análise , Proteínas/análise , Software
2.
Anal Chem ; 96(28): 11273-11279, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38967040

RESUMO

Fast Photochemical Oxidation of Proteins (FPOP) is a protein footprinting method utilizing hydroxyl radicals to provide valuable information on the solvent-accessible surface area. The extensive number of oxidative modifications that are created by FPOP is both advantageous, leading to great spatial resolution, and challenging, increasing the complexity of data processing. The precise localization of the modification together with the appropriate reproducibility is crucial to obtain relevant structural information. In this paper, we propose a novel approach combining validated spectral libraries together with utilizing DIA data. First, the DDA data searched by FragPipe are subsequently validated using Skyline software to form a spectral library. This library is then matched against the DIA data to filter out nonrepresentative IDs. In comparison with FPOP data processing using only a search engine followed by generally applied filtration steps, the manually validated spectral library offers higher confidence in identifications and increased spatial resolution. Furthermore, the reproducibility of quantification was compared for DIA, DDA, and MS-only acquisition modes on timsTOF SCP. Comparison of coefficients of variation (CV) showed that the DIA and MS acquisition modes exhibit significantly better reproducibility in quantification (CV medians 0.1233 and 0.1494, respectively) compared to the DDA mode (CV median 0.2104).


Assuntos
Oxirredução , Processos Fotoquímicos , Proteínas , Proteínas/química , Proteínas/análise , Radical Hidroxila/química , Radical Hidroxila/análise , Software
3.
Anal Chem ; 95(44): 16123-16130, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37877738

RESUMO

Two-dimensional mass spectrometry (2D MS) is a multiplexed tandem mass spectrometry method that does not rely on ion isolation to correlate the precursor and fragment ions. On a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS), 2D MS instead uses the modulation of precursor ion radii inside the ICR cell before fragmentation and yields 2D mass spectra that show the fragmentation patterns of all the analytes. In this study, we perform 2D MS for the first time with quadrupolar detection in a dynamically harmonized ICR cell. We discuss the advantages of quadrupolar detection in 2D MS and how we adapted existing data processing techniques for accurate frequency-to-mass conversion. We apply 2D MS with quadrupolar detection to the top-down analysis of covalently labeled ubiquitin with ECD fragmentation, and we develop a workflow for label-free relative quantification of biomolecule isoforms in 2D MS.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Ubiquitina , Ciclotrons , Análise de Fourier
4.
Physiol Plant ; 175(4): e13973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37402155

RESUMO

In contrast to inorganic nitrogen (N) assimilation, the role of organic N forms, such as proteins and peptides, as sources of N and their impact on plant metabolism remains unclear. Simultaneously, organic biostimulants are used as priming agents to improve plant defense response. Here, we analysed the metabolic response of tobacco plants grown in vitro with casein hydrolysate or protein. As the sole source of N, casein hydrolysate enabled tobacco growth, while protein casein was used only to a limited extent. Free amino acids were detected in the roots of tobacco plants grown with protein casein but not in the plants grown with no source of N. Combining hydrolysate with inorganic N had beneficial effects on growth, root N uptake and protein content. The metabolism of casein-supplemented plants shifted to aromatic (Trp), branched-chain (Ile, Leu, Val) and basic (Arg, His, Lys) amino acids, suggesting their preferential uptake and/or alterations in their metabolic pathways. Complementarily, proteomic analysis of tobacco roots identified peptidase C1A and peptidase S10 families as potential key players in casein degradation and response to N starvation. Moreover, amidases were significantly upregulated, most likely for their role in ammonia release and impact on auxin synthesis. In phytohormonal analysis, both forms of casein influenced phenylacetic acid and cytokinin contents, suggesting a root system response to scarce N availability. In turn, metabolomics highlighted the stimulation of some plant defense mechanisms under such growth conditions, that is, the high concentrations of secondary metabolites (e.g., ferulic acid) and heat shock proteins.


Assuntos
Nicotiana , Nitrogênio , Humanos , Nicotiana/metabolismo , Nitrogênio/metabolismo , Caseínas/metabolismo , Proteômica , Aminoácidos/metabolismo , Plantas/metabolismo , Peptídeo Hidrolases/metabolismo
5.
Ecotoxicol Environ Saf ; 268: 115729, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000304

RESUMO

Several 1,2,4-triazoles are widely used as systemic fungicides in agriculture because they inhibit fungal 14ɑ-demethylase. However, they can also act on many non-target plant enzymes, thereby affecting phytohormonal balance, free amino acid content, and adaptation to stress. In this study, tomato plants (Solanum lycopersicum L. var. 'Cherrola') were exposed to penconazole, tebuconazole, or their combination, either by foliar spraying or soil drenching, every week, as an ecotoxicological model. All triazole-exposed plants showed a higher content (1.7-8.8 ×) of total free amino acids than the control, especially free glutamine and asparagine were increased most likely in relation to the increase in active cytokinin metabolites 15 days after the first application. Conversely, the Trp content decreased in comparison with control (0.2-0.7 ×), suggesting depletion by auxin biosynthesis. Both triazole application methods slightly affected the antioxidant system (antioxidant enzyme activity, antioxidant capacity, and phenolic content) in tomato leaves. These results indicated that the tomato plants adapted to triazoles over time. Therefore, increasing the abscisic and chlorogenic acid content in triazole-exposed plants may promote resistance to abiotic stress.


Assuntos
Antifúngicos , Solanum lycopersicum , Antioxidantes/metabolismo , Redes e Vias Metabólicas , Triazóis/toxicidade
6.
Molecules ; 28(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770686

RESUMO

Pseudomonas aeruginosa is one of the most antibiotic multi-resistant bacteria, causing chronic pulmonary disease and leading to respiratory failure and even mortality. Thus, there has been an ever-increasing search for novel and preferably natural antimicrobial compounds. Agrimonia eupatoria L. and Origanum vulgare L. shoots are commonly used as teas or alcoholic tinctures for their human health-promoting and antibacterial properties. Here, we explored the antimicrobial effects of all plant parts, i.e., leaf, flower, stem, and root extracts, prepared in water or in 60% ethanol, against P. aeruginosa. The impact of these extracts on bacterial survival was determined using a luminescent strain of P. aeruginosa, which emits light when alive. In addition, the antimicrobial effects were compared with the antioxidant properties and content of phenolic compounds of plant extracts. Ethanolic extracts of O. vulgare roots and flowers showed the highest antimicrobial activity, followed by A. eupatoria roots. In particular, chlorogenic acid, the ethanolic extract of O. vulgare roots contained high levels of protocatechuic acid, hesperidin, shikimic acid, rutin, quercetin, and morin. The synergistic effects of these phenolic compounds and flavonoids may play a key role in the antibacterial activity of teas and tinctures.


Assuntos
Agrimonia , Anti-Infecciosos , Origanum , Humanos , Pseudomonas aeruginosa , Folhas de Planta , Antioxidantes/farmacologia , Flavonoides/farmacologia , Fenóis , Flores , Antibacterianos/farmacologia , Etanol , Extratos Vegetais/farmacologia
7.
Anal Chem ; 94(28): 9993-10002, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35797180

RESUMO

Fast photochemical oxidation of proteins (FPOP) footprinting is a structural mass spectrometry method that maps proteins by fast and irreversible chemical reactions. The position of oxidative modification reflects solvent accessibility and site reactivity and thus provides information about protein conformation, structural dynamics, and interactions. Bottom-up mass spectrometry is an established standard method to analyze FPOP samples. In the bottom-up approach, all forms of the protein are digested together by a protease of choice, which results in a mixture of peptides from various subpopulations of proteins with varying degrees of photochemical oxidation. Here, we investigate the possibility to analyze a specifically selected population of only singly oxidized proteins. This requires utilization of more specific top-down mass spectrometry approaches. The key element of any top-down experiment is the selection of a suitable method of ion isolation, excitation, and fragmentation. Here, we employ and compare collision-induced dissociation, electron-transfer dissociation, and electron-capture dissociation combined with multi-continuous accumulation of selected ions. A singly oxidized subpopulation of FPOP-labeled ubiquitin was used to optimize the method. The top-down approach in FPOP is limited to smaller proteins, but its usefulness was demonstrated by using it to visualize structural changes induced by co-factor removal from the holo/apo myoglobin system. The top-down data were compared with the literature and with the bottom-up data set obtained on the same samples. The top-down results were found to be in good agreement, which indicates that monitoring a singly oxidized FPOP ion population by the top-down approach is a functional workflow for oxidative protein footprinting.


Assuntos
Elétrons , Pegadas de Proteínas , Mioglobina/química , Estresse Oxidativo , Conformação Proteica , Pegadas de Proteínas/métodos
8.
Anal Chem ; 94(7): 3203-3210, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35134296

RESUMO

A combination of covalent labeling techniques and mass spectrometry (MS) is currently a progressive approach for deriving insights related to the mapping of protein surfaces or protein-ligand interactions. In this study, we mapped an interaction interface between the DNA binding domain (DBD) of FOXO4 protein and the DNA binding element (DAF16) using fast photochemical oxidation of proteins (FPOP). Residues involved in protein-DNA interaction were identified using the bottom-up approach. To confirm the findings and avoid a misinterpretation of the obtained data, caused by possible multiple radical oxidations leading to the protein surface alteration and oxidation of deeply buried amino acid residues, a top-down approach was employed for the first time in FPOP analysis. An isolation of singly oxidized ions enabled their gas-phase separation from multiply oxidized species followed by CID and ECD fragmentation. Application of both fragmentation techniques allowed generation of complementary fragment sets, out of which the regions shielded in the presence of DNA were deduced. The findings obtained by bottom-up and top-down approaches were highly consistent. Finally, FPOP results were compared with those of the HDX study of the FOXO4-DBD·DAF16 complex. No contradictions were found between the methods. Moreover, their combination provides complementary information related to the structure and dynamics of the protein-DNA complex. Data are available via ProteomeXchange with identifier PXD027624.


Assuntos
Aminoácidos , DNA , Espectrometria de Massas/métodos , Oxirredução , Fatores de Transcrição
9.
J Proteome Res ; 20(4): 2021-2027, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33657806

RESUMO

Chemical cross-linking mass spectrometry has become a popular tool in structural biology. Although several algorithms exist that efficiently analyze data-dependent mass spectrometric data, the algorithm to identify and quantify intermolecular cross-links located at the interaction interface of homodimer molecules was missing. The algorithm in LinX utilizes high mass accuracy for ion identification. In contrast with standard data-dependent analysis, LinX enables the elucidation of cross-linked peptides originating from the interaction interface of homodimers labeled by 14N/15N, including their ratio or cross-links from protein-nucleic acid complexes. The software is written in Java language, and its source code and a detailed user's guide are freely available at https://github.com/KukackaZ/LinX or https://ms-utils.org/LinX. Data are accessible via the ProteomeXchange server with the data set identifier PXD023522.


Assuntos
Peptídeos , Software , Algoritmos , Reagentes de Ligações Cruzadas , Espectrometria de Massas
10.
J Biol Chem ; 295(27): 8928-8944, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32371396

RESUMO

Translocase of outer mitochondrial membrane 34 (TOMM34) orchestrates heat shock protein 70 (HSP70)/HSP90-mediated transport of mitochondrial precursor proteins. Here, using in vitro phosphorylation and refolding assays, analytical size-exclusion chromatography, and hydrogen/deuterium exchange MS, we found that TOMM34 associates with 14-3-3 proteins after its phosphorylation by protein kinase A (PKA). PKA preferentially targeted two serine residues in TOMM34: Ser93 and Ser160, located in the tetratricopeptide repeat 1 (TPR1) domain and the interdomain linker, respectively. Both of these residues were necessary for efficient 14-3-3 protein binding. We determined that phosphorylation-induced structural changes in TOMM34 are further augmented by binding to 14-3-3, leading to destabilization of TOMM34's secondary structure. We also observed that this interaction with 14-3-3 occludes the TOMM34 interaction interface with ATP-bound HSP70 dimers, which leaves them intact and thereby eliminates an inhibitory effect of TOMM34 on HSP70-mediated refolding in vitro In contrast, we noted that TOMM34 in complex with 14-3-3 could bind HSP90. Both TOMM34 and 14-3-3 participated in cytosolic precursor protein transport mediated by the coordinated activities of HSP70 and HSP90. Our results provide important insights into how PKA-mediated phosphorylation and 14-3-3 binding regulate the availability of TOMM34 for its interaction with HSP70.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Células MCF-7 , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Fosforilação/fisiologia , Ligação Proteica , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Nucleic Acids Res ; 47(15): 8282-8300, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31291455

RESUMO

eIF3 is a large multiprotein complex serving as an essential scaffold promoting binding of other eIFs to the 40S subunit, where it coordinates their actions during translation initiation. Perhaps due to a high degree of flexibility of multiple eIF3 subunits, a high-resolution structure of free eIF3 from any organism has never been solved. Employing genetics and biochemistry, we previously built a 2D interaction map of all five yeast eIF3 subunits. Here we further improved the previously reported in vitro reconstitution protocol of yeast eIF3, which we cross-linked and trypsin-digested to determine its overall shape in 3D by advanced mass-spectrometry. The obtained cross-links support our 2D subunit interaction map and reveal that eIF3 is tightly packed with its WD40 and RRM domains exposed. This contrasts with reported cryo-EM structures depicting eIF3 as a molecular embracer of the 40S subunit. Since the binding of eIF1 and eIF5 further fortified the compact architecture of eIF3, we suggest that its initial contact with the 40S solvent-exposed side makes eIF3 to open up and wrap around the 40S head with its extended arms. In addition, we mapped the position of eIF5 to the region below the P- and E-sites of the 40S subunit.


Assuntos
Fator de Iniciação 1 em Eucariotos/química , Fator de Iniciação 3 em Eucariotos/química , Fator de Iniciação 5 em Eucariotos/química , Iniciação Traducional da Cadeia Peptídica , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Sítios de Ligação/genética , Microscopia Crioeletrônica , Fator de Iniciação 1 em Eucariotos/genética , Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Fator de Iniciação 5 em Eucariotos/genética , Fator de Iniciação 5 em Eucariotos/metabolismo , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Subunidades Ribossômicas Menores de Eucariotos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Anal Chem ; 92(19): 12783-12788, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32880439

RESUMO

Three-dimensional printing (3D printing) is a fast-growing technology with high impact in industry, medicine, and the life sciences. Fused deposition modeling (FDM), which uses plastic filaments extruded through a heated nozzle, is the most common 3D printing technology for creation of objects. In this work, the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) target plates printed by FDM technology using conductive plastic material were evaluated for their detection capability of proteins and peptides. The 3D printed MALDI targets were validated by analysis of different types of bacteria and compared with commercially available MBT BioTargets. The results indicate that 3D printed MALDI targets are comparable to standard MBT BioTargets and stainless-steel targets and may be used for different MALDI-TOF MS applications. The 3D printing allows easy manufacturing of MALDI targets with different dimensions and spot geometry. Moreover, the 3D printed MALDI targets are disposable, cheap, and easy to produce. These features make them a suitable cost-effective alternative to conventional targets for any MALDI MS analysis.

13.
Chemistry ; 25(69): 15779-15785, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31523878

RESUMO

A series of fluoroalkylated cyclic λ3 -iodanes and their hydrochloride salts was prepared and used in a combination with sodium ascorbate in buffer or aqueous methanol mixtures for radical fluoroalkylation of a range of substituted indoles, pyrroles, tryptophan or its derivatives, and Trp residues in peptides. As demonstrated on several peptides, the aromatic amino acid residues of Trp, Tyr, Phe, and His are targeted with high selectivity to Trp. The functionalization method is biocompatible, mild, rapid, and transition-metal-free. The proteins myoglobin, ubiquitin, and human carbonic anhydrase I were also successfully functionalized.


Assuntos
Aminoácidos Aromáticos/química , Indóis/química , Peptídeos/química , Proteínas/química , Pirróis/química , Alquilação , Aminoácidos Aromáticos/síntese química , Radicais Livres/síntese química , Radicais Livres/química , Halogenação , Humanos , Indóis/síntese química , Modelos Moleculares , Peptídeos/síntese química , Proteínas/síntese química , Pirróis/síntese química
14.
Mol Cell Proteomics ; 15(5): 1710-27, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26944342

RESUMO

Co-chaperones containing tetratricopeptide repeat (TPR) domains enable cooperation between Hsp70 and Hsp90 to maintain cellular proteostasis. Although the details of the molecular interactions between some TPR domains and heat shock proteins are known, we describe a novel mechanism by which Tomm34 interacts with and coordinates Hsp70 activities. In contrast to the previously defined Hsp70/Hsp90-organizing protein (Hop), Tomm34 interaction is dependent on the Hsp70 chaperone cycle. Tomm34 binds Hsp70 in a complex process; anchorage of the Hsp70 C terminus by the TPR1 domain is accompanied by additional contacts formed exclusively in the ATP-bound state of Hsp70 resulting in a high affinity entropically driven interaction. Tomm34 induces structural changes in determinants within the Hsp70-lid subdomain and modulates Hsp70/Hsp40-mediated refolding and Hsp40-stimulated Hsp70 ATPase activity. Because Tomm34 recruits Hsp90 through its TPR2 domain, we propose a model in which Tomm34 enables Hsp70/Hsp90 scaffolding and influences the Hsp70 chaperone cycle, providing an additional role for co-chaperones that contain multiple TPR domains in regulating protein homeostasis.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína
15.
Biochim Biophys Acta Gen Subj ; 1861(2): 157-167, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27851982

RESUMO

BACKGROUND: Cellobiose dehydrogenase (CDH) is a fungal extracellular oxidoreductase which fuels lytic polysaccharide monooxygenase with electrons during cellulose degradation. Interdomain electron transfer between the flavin and cytochrome domain in CDH, preceding the electron flow to lytic polysaccharide monooxygenase, is known to be pH dependent, but the exact mechanism of this regulation has not been experimentally proven so far. METHODS: To investigate the structural aspects underlying the domain interaction in CDH, hydrogen/deuterium exchange (HDX-MS) with improved proteolytic setup (combination of nepenthesin-1 with rhizopuspepsin), native mass spectrometry with ion mobility and electrostatics calculations were used. RESULTS: HDX-MS revealed pH-dependent changes in solvent accessibility and hydrogen bonding at the interdomain interface. Electrostatics calculations identified these differences to result from charge neutralization by protonation and together with ion mobility pointed at higher electrostatic repulsion between CDH domains at neutral pH. In addition, we uncovered extensive O-glycosylation in the linker region and identified the long-unknown exact cleavage point in papain-mediated domain separation. CONCLUSIONS: Transition of CDH between its inactive (open) and interdomain electron transfer-capable (closed) state is shown to be governed by changes in the protein surface electrostatics at the domain interface. Our study confirms that the interdomain electrostatic repulsion is the key factor modulating the functioning of CDH. GENERAL SIGNIFICANCE: The results presented in this paper provide experimental evidence for the role of charge repulsion in the interdomain electron transfer in cellobiose dehydrogenases, which is relevant for exploiting their biotechnological potential in biosensors and biofuel cells.


Assuntos
Desidrogenases de Carboidrato/metabolismo , Celobiose/metabolismo , Transporte de Elétrons/fisiologia , Sequência de Aminoácidos , Citocromos/metabolismo , Deutério/metabolismo , Elétrons , Flavinas/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Glicosilação , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Domínios Proteicos , Proteólise , Eletricidade Estática
16.
Proteins ; 84(10): 1375-89, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27273553

RESUMO

The oxygen sensor histidine kinase AfGcHK from the bacterium Anaeromyxobacter sp. Fw 109-5 forms a two-component signal transduction system together with its cognate response regulator (RR). The binding of oxygen to the heme iron of its N-terminal sensor domain causes the C-terminal kinase domain of AfGcHK to autophosphorylate at His183 and then transfer this phosphate to Asp52 or Asp169 of the RR protein. Analytical ultracentrifugation revealed that AfGcHK and the RR protein form a complex with 2:1 stoichiometry. Hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) suggested that the most flexible part of the whole AfGcHK protein is a loop that connects the two domains and that the heme distal side of AfGcHK, which is responsible for oxygen binding, is the only flexible part of the sensor domain. HDX-MS studies on the AfGcHK:RR complex also showed that the N-side of the H9 helix in the dimerization domain of the AfGcHK kinase domain interacts with the helix H1 and the ß-strand B2 area of the RR protein's Rec1 domain, and that the C-side of the H8 helix region in the dimerization domain of the AfGcHK protein interacts mostly with the helix H5 and ß-strand B6 area of the Rec1 domain. The Rec1 domain containing the phosphorylable Asp52 of the RR protein probably has a significantly higher affinity for AfGcHK than the Rec2 domain. We speculate that phosphorylation at Asp52 changes the overall structure of RR such that the Rec2 area containing the second phosphorylation site (Asp169) can also interact with AfGcHK. Proteins 2016; 84:1375-1389. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Bactérias/química , Histidina Quinase/química , Myxococcales/química , Oxigênio/química , Transdução de Sinais , Aeromonas salmonicida/genética , Aeromonas salmonicida/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Medição da Troca de Deutério , Escherichia coli/genética , Escherichia coli/metabolismo , Heme/química , Heme/metabolismo , Histidina/química , Histidina/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Ferro/química , Ferro/metabolismo , Myxococcales/enzimologia , Oxigênio/metabolismo , Fosforilação , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína
17.
Clin Chem ; 62(1): 270-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26482160

RESUMO

BACKGROUND: Recent studies show that the haptoglobin phenotype in individuals with diabetes mellitus is an important factor for predicting the risk of myocardial infarction, cardiovascular death, and stroke. Current methods for haptoglobin phenotyping include PCR and gel electrophoresis. A need exists for a reliable method for high-throughput clinical applications. Mass spectrometry (MS) can in principle provide fast phenotyping because haptoglobin α 1 and α 2, which define the phenotype, have different molecular masses. Because of the complexity of the serum matrix, an efficient and fast enrichment technique is necessary for an MS-based assay. METHODS: MALDI plates were functionalized by ambient ion landing of electrosprayed antihaptoglobin antibody. The array was deposited on standard indium tin oxide slides. Fast immunoaffinity enrichment was performed in situ on the plate, which was further analyzed by MALDI-TOF MS. The haptoglobin phenotype was determined from the spectra by embedded software script. RESULTS: The MALDI mass spectra showed ion signals of haptoglobin α subunits at m/z 9192 and at m/z 15 945. A cohort of 116 sera was analyzed and the reliability of the method was confirmed by analyzing the identical samples by Western blot. One hundred percent overlap of results between the direct immunoaffinity desorption/ionization MS and Western Blot analysis was found. CONCLUSIONS: MALDI plates modified by antihaptoglobin antibody using ambient ion landing achieve low nonspecific interactions and efficient MALDI ionization and are usable for quick haptoglobin phenotyping.


Assuntos
Haptoglobinas/análise , Haptoglobinas/imunologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Anticorpos/imunologia , Western Blotting , Cromatografia de Afinidade , Humanos , Fenótipo , Software , Propriedades de Superfície
18.
Methods ; 89: 112-20, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26048481

RESUMO

Chemical cross-linking is a promising technology for protein tertiary structure determination. Though the data has low spatial resolution, it is possible to obtain it at physiological conditions on proteins that are not amenable to standard high resolution techniques such as X-ray, NMR analysis and cryo-EM. Here we demonstrate the utilization of isotopically labeled chemical cross-linking to visualize protein conformation rearrangements. Since calmodulin exists in two distinct conformations (calcium-free and calcium-containing forms), we selected this protein for testing the potential and the limits of a new technique. After cross-linking of both calmodulin forms, the calcium-free and calcium-containing forms were mixed together and digested under different conditions and the products of proteolysis were monitored using high resolution mass spectrometry. Finally, the ratios of heavy/light cross-links were calculated by mMass open source platform.


Assuntos
Calmodulina/análise , Calmodulina/química , Reagentes de Ligações Cruzadas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Bovinos , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Estrutura Secundária de Proteína
19.
Chem Res Toxicol ; 28(2): 216-24, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25621379

RESUMO

There is mounting evidence that cyanobacterial lipopeptides can kill mammalian cells, presenting a hazard to human health. Unfortunately, their mechanism of toxicity is poorly understood. We have isolated new cyclic undecalipopeptides muscotoxin A and B containing unique lipophilicresidue 3-amino-2,5-dihydroxydecanoic acid (5-OH Ahdoa). Muscotoxin B was not used for biological studies due to its poor yield. Muscotoxin A was cytotoxic to YAC-1, Sp/2, and HeLa cancer cell lines (LC(50) ranged from 9.9 to 13.2 µM after 24 h of exposure), causing membrane damage and influx of calcium ions. Subsequently, we studied this lytic mechanism using synthetic liposomes with encapsulated fluorescent probes. Muscotoxin A permeabilized liposomes composed exclusively of phospholipids, demonstrating that no proteins or carbohydrates present in biomembranes are essential for its activity. Paradoxically, the permeabilization activity of muscotoxin A was mediated by a significant reduction in membrane surface fluidity (stiffening), the opposite of that caused by synthetic detergents and cytolytic lipopeptide puwainaphycin F. At 25 °C, muscotoxin A disrupted liposomes with and without cholesterol/sphingomyelin; however, at 37 °C, it was selective against liposomes with cholesterol/sphingomyelin. It appears that both membrane fluidity and organization can affect the lytic activity of muscotoxin A. Our findings strengthen the evidence that cyanobacterial lipopeptides specifically disrupt mammalian cell membranes and bring new insights into the mechanism of this effect.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Cianobactérias/química , Lipopeptídeos/toxicidade , Fluidez de Membrana/efeitos dos fármacos , Peptídeos Cíclicos/toxicidade , Fosfolipídeos/química , Animais , Morte Celular/efeitos dos fármacos , Membrana Celular/química , Imunofluorescência , Células HeLa , Humanos , Lipopeptídeos/química , Lipopeptídeos/isolamento & purificação , Camundongos , Conformação Molecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Células Tumorais Cultivadas
20.
Neuro Endocrinol Lett ; 35 Suppl 2: 114-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25638375

RESUMO

OBJECTIVES: The mammalian mixed function oxidase (MFO) system participates in hydroxylation of many hydrophobic endogenous compounds as well as xenobiotics such as drugs and carcinogens. This biotransformation system, located in a membrane of endoplasmic reticulum, consists of cytochrome P-450 (P450), NADPH:P450 oxidoreductase and a facultative component, cytochrome b5. The knowledge of the interactions among the individual components of the MFO system is essential to understand the relationships between the structure and function of this system that finally dictate a qualitative and quantitative pattern of produced metabolites (e.g. detoxified xenobiotics and/or activated carcinogens). To elucidate the quantitative aspects of the interactions within the MFO system we acquired the photo-initiated cross-linking approach. METHODS: The photo-initiated cross-linking employing cytochrome b5 as a protein nanoprobe [an amino acid analogue of methionine (pMet) was incorporated into cytochrome b5 sequence during recombinant expression] was used to quantify its interaction with P450 2B4 in a functional membrane complex. The cross-linking was initiated by UV-irradiation that formed from a pMet photolabile diazirine group highly reactive carbene biradical. This biradical is able to covalently bind amino acids in the close proximity and to form cross-link. The Met 96 of cytochrome b5 is situated in a linker region between its catalytic and membrane domains, while Met 126 and 131 are located in its membrane domain. The combination of several methods (electrophoresis in polyacrylamide gel, isoelectric focusing, Edman N-terminal degradation and amino acid analysis) was employed to characterize the molar ratio of P450 2B4 to cytochrome b5 in formed covalent cross-links to quantify their transient interactions. RESULTS: The successfully produced cytochrome b5 nanoprobe (with confirmed pMet incorporation by mass spectrometry) stimulates the catalytical activity of P450 2B4 when reconstituted with NADPH:P450 oxidoreductase in vitro in dilauroylphosphatidylcholine (DLPC) vesicles. The cross-linking was carried out in similar reconstituted system without NADPH:P450 oxidoreductase, and at least three products were separated on 1D SDS-PAGE. The molar ratio of P450 to cytochrome b5 in each complex was estimated using the above-mentioned combination of methods as 1:1, 1:2 and 2:1. CONCLUSIONS: The results demonstrate the utility of cytochrome b5 nanoprobe to study the interactions in MFO system. Using this nanoprobe, heterodimer with P450 2B4 and in addition also heterooligomers were identified, suggesting rather complex interactions of both proteins in this system that suppose the formation of such multimeric structures in the membrane of endoplasmic reticulum.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Membrana Celular/metabolismo , Citocromos b5/metabolismo , Animais , Família 2 do Citocromo P450
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA