Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurochem ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497582

RESUMO

Stressful life events contribute to the onset of major depressive disorder (MDD). We recently demonstrated abnormalities in ubiquitination in the pathophysiology of MDD. However, the underlying molecular mechanisms remain unclear. We investigated the involvement of the ubiquitination system-mediated glutamatergic dysfunction in social impairment induced by chronic social defeat stress (CSDS). Adult C57BL/6J mice were exposed to aggressor ICR male mice for 10 consecutive days. Social impairment was induced by CSDS in the social interaction test 1 days after the last stress exposure. In terms of brain microdialysis, CSDS reduced depolarization-evoked glutamate release in the prefrontal cortex (PFC), which was reversed by a glutamate transporter 1 (GLT-1) inhibitor. Interestingly, the expression of ubiquitinated, but not total GLT-1, was decreased in the PFC of mice exposed to CSDS. The expression of neural precursor cells expressing developmentally downregulated gene 4-like (Nedd4L: E3 ligase for GLT-1), and ubiquitin-conjugating enzyme E2D2 (Ube2d2: E2 ubiquitin-conjugating enzyme for Nedd4L) was also reduced in CSDS mice. Furthermore, the downregulation of the Nedd4L-GLT-1 ubiquitination pathway decreased SIT ratio, but up-regulation increased it even in non-CSDS mice. Taken together, the decrease in GLT-1 ubiquitination may reduce the release of extracellular glutamate induced by high-potassium stimulation, which may lead to social impairment, while we could not find differences in GLT-1 ubiquitination between susceptible and resistant CSDS mice. In conclusion, GLT-1 ubiquitination could play a crucial role in the pathophysiology of MDD and is an attractive target for the development of novel antidepressants.

2.
Blood Adv ; 8(7): 1820-1833, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38096800

RESUMO

ABSTRACT: Recombination-activating genes (RAG1 and RAG2) are critical for lymphoid cell development and function by initiating the variable (V), diversity (D), and joining (J) (V(D)J)-recombination process to generate polyclonal lymphocytes with broad antigen specificity. The clinical manifestations of defective RAG1/2 genes range from immune dysregulation to severe combined immunodeficiencies (SCIDs), causing life-threatening infections and death early in life without hematopoietic cell transplantation (HCT). Despite improvements, haploidentical HCT without myeloablative conditioning carries a high risk of graft failure and incomplete immune reconstitution. The RAG complex is only expressed during the G0-G1 phase of the cell cycle in the early stages of T- and B-cell development, underscoring that a direct gene correction might capture the precise temporal expression of the endogenous gene. Here, we report a feasibility study using the CRISPR/Cas9-based "universal gene-correction" approach for the RAG2 locus in human hematopoietic stem/progenitor cells (HSPCs) from healthy donors and RAG2-SCID patient. V(D)J-recombinase activity was restored after gene correction of RAG2-SCID-derived HSPCs, resulting in the development of T-cell receptor (TCR) αß and γδ CD3+ cells and single-positive CD4+ and CD8+ lymphocytes. TCR repertoire analysis indicated a normal distribution of CDR3 length and preserved usage of the distal TRAV genes. We confirmed the in vivo rescue of B-cell development with normal immunoglobulin M surface expression and a significant decrease in CD56bright natural killer cells. Together, we provide specificity, toxicity, and efficacy data supporting the development of a gene-correction therapy to benefit RAG2-deficient patients.


Assuntos
Proteínas de Homeodomínio , Imunodeficiência Combinada Severa , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , VDJ Recombinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA