RESUMO
HIV-1 delivers its genetic material to infect a cell after fusion of the viral and host cell membranes, which takes place after the viral envelope (Env) binds host receptor and co-receptor proteins. Binding of host receptor CD4 to Env results in conformational changes that allow interaction with a host co-receptor (CCR5 or CXCR4). Further conformational rearrangements result in an elongated pre-hairpin intermediate structure in which Env is anchored to the viral membrane by its transmembrane region and to the host cell membrane by its fusion peptide. Although budding virions can be readily imaged by electron tomography (ET) of HIV-1-infected tissues and cultured cells, virions that are fusing (attached to host cells via pre-hairpin intermediates) are not normally visualized, perhaps because the process of membrane fusion is too fast to capture by ET. To image virions during fusion, we used fusion inhibitors to prevent downstream conformational changes in Env that lead to membrane fusion, thereby trapping HIV-1 virions linked to target cells by pre-hairpin intermediates. ET of HIV-1 pseudovirions bound to CD4+/CCR5+ TZM-bl cells revealed presumptive pre-hairpin intermediates as 2-4 narrow spokes linking a virion to the cell surface. To extend these results to a more physiological setting, we used ET to image tissues and organs derived from humanized bone marrow/liver/thymus mice infected with HIV-1 and then treated with CPT31, a high-affinity D-peptide fusion inhibitor linked to cholesterol. Trapped HIV-1 virions were found in all tissues studied (small intestine, mesenteric lymph nodes, spleen, and bone marrow), and spokes representing pre-hairpin intermediates linking trapped virions to cell surfaces were similar in structure and number to those seen in the previous pseudovirus and cultured cell ET study.IMPORTANCETrapped and untrapped HIV-1 virions, both mature and immature, were distinguished by localizing spokes via 3D tomographic reconstructions of HIV-1 infected and fusion-inhibitor-treated tissues of humanized mice. The findings of trapped HIV-1 virions in all tissues examined demonstrate a wide distribution of the CPT31 inhibitor, a desirable property for a potential therapeutic. In addition, the presence of virions trapped by spokes, particularly in vascular endothelial cells, demonstrates that the fusion inhibitors can be used as markers for potential HIV-1-target cells within tissues, facilitating the mapping of HIV-1 target cells within the complex cellular milieu of infected tissues.
RESUMO
Chemical protein synthesis enables access to proteins that would otherwise be difficult or impossible to obtain with traditional means such as recombinant expression. Chemoselective ligations provide the ability to join peptide segments prepared by solid-phase peptide synthesis. While native chemical ligation (NCL) is widely used, it is limited by the need for C-terminal thioesters with suitable reaction kinetics, properly placed native Cys or thiolated derivatives, and peptide segment solubility at low mM concentrations. Moreover, repetitive purifications to isolate ligated products are often yield-sapping, hampering efficiency and progress. In this work, we demonstrate the use of Controlled Activation of Peptides for Templated NCL (CAPTN). This traceless multi-segment templated NCL approach permits the one-pot synthesis of proteins by harnessing selective thioester activation and orthogonal conjugation chemistries to favor formation of the full-length ligated product while minimizing side reactions. Importantly, CAPTN provides kinetic enhancements allowing ligations at sterically hindered junctions and low peptide concentrations. Additionally, this one-pot approach removes the need for intermediate purification. We report the synthesis of two E. coli ribosomal subunits S16 and S17 enabled by the chemical tools described herein. We anticipate that CAPTN will expedite the synthesis of valuable proteins and expand on templated approaches for chemical protein synthesis.
RESUMO
Cholesterol-PIE12-trimer (CPT31) is a potent d-peptide HIV entry inhibitor that targets the highly conserved gp41 N-peptide pocket region. CPT31 exhibited strong inhibitory breadth against diverse panels of primary virus isolates. In a simian-HIV chimeric virus AD8 (SHIVAD8) macaque model, CPT31 prevented infection from a single high-dose rectal challenge. In chronically infected animals, CPT31 monotherapy rapidly reduced viral load by â¼2 logs before rebound occurred due to the emergence of drug resistance. In chronically infected animals with viremia initially controlled by combination antiretroviral therapy (cART), CPT31 monotherapy prevented viral rebound after discontinuation of cART. These data establish CPT31 as a promising candidate for HIV prevention and treatment.
Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV , Vírus da Imunodeficiência Símia , Internalização do Vírus/efeitos dos fármacos , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Feminino , HIV/efeitos dos fármacos , HIV/genética , Proteína gp41 do Envelope de HIV/antagonistas & inibidores , Infecções por HIV/tratamento farmacológico , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Macaca mulatta , Masculino , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/genéticaRESUMO
The scope of proteins accessible to total chemical synthesis via native chemical ligation (NCL) is often limited by slow ligation kinetics. Here we describe Click-Assisted NCL (CAN), in which peptides are incorporated with traceless "helping hand" lysine linkers that enable addition of dibenzocyclooctyne (DBCO) and azide handles. The resulting strain-promoted alkyne-azide cycloaddition (SPAAC) increases their effective concentration to greatly accelerate ligations. We demonstrate that copper(I) protects DBCO from acid-mediated rearrangement during acidic peptide cleavage, enabling direct production of DBCO synthetic peptides. Excitingly, triazole-linked model peptides ligated rapidly and accumulated little side product due to the fast reaction time. Using the E. coli ribosomal subunit L32 as a model protein, we further demonstrate that SPAAC, ligation, desulfurization, and linker cleavage steps can be performed in one pot. CAN is a useful method for overcoming challenging ligations involving sterically hindered junctions. Additionally, CAN is anticipated to be an important stepping stone toward a multisegment, one-pot, templated ligation system.
Assuntos
Cobre , Escherichia coli , Alcinos , Azidas , Química ClickRESUMO
Native chemical ligation (NCL) enables the total chemical synthesis of proteins. However, poor peptide segment solubility remains a frequently encountered challenge. Here we introduce a traceless linker that can be temporarily attached to Glu side chains to overcome this problem. This strategy employs a new tool, Fmoc-Glu(AlHx)-OH, which can be directly installed using standard Fmoc-based solid-phase peptide synthesis. The incorporated residue, Glu(AlHx), is stable to a wide range of chemical protein synthesis conditions and is removed through palladium-catalyzed transfer under aqueous conditions. General handling characteristics, such as efficient incorporation, stability and rapid removal were demonstrated through a model peptide modified with Glu(AlHx) and a Lys6 solubilizing tag. Glu(AlHx) was incorporated into a highly insoluble peptide segment during the total synthesis of the bacteriocin AS-48. This challenging peptide was successfully synthesized and folded, and it has comparable antimicrobial activity to the native AS-48. We anticipate widespread use of this easy-to-use, robust linker for the preparation of challenging synthetic peptides and proteins.
Assuntos
Ácido GlutâmicoRESUMO
BACKGROUND: PIE12-trimer is a highly potent D-peptide HIV-1 entry inhibitor that broadly targets group M isolates. It specifically binds the three identical conserved hydrophobic pockets at the base of the gp41 N-trimer with sub-femtomolar affinity. This extremely high affinity for the transiently exposed gp41 trimer provides a reserve of binding energy (resistance capacitor) to prevent the viral resistance pathway of stepwise accumulation of modest affinity-disrupting mutations. Such modest mutations would not affect PIE12-trimer potency and therefore not confer a selective advantage. Viral passaging in the presence of escalating PIE12-trimer concentrations ultimately selected for PIE12-trimer resistant populations, but required an extremely extended timeframe (> 1 year) in comparison to other entry inhibitors. Eventually, HIV developed resistance to PIE12-trimer by mutating Q577 in the gp41 pocket. RESULTS: Using deep sequence analysis, we identified three mutations at Q577 (R, N and K) in our two PIE12-trimer resistant pools. Each point mutant is capable of conferring the majority of PIE12-trimer resistance seen in the polyclonal pools. Surface plasmon resonance studies demonstrated substantial affinity loss between PIE12-trimer and the Q577R-mutated gp41 pocket. A high-resolution X-ray crystal structure of PIE12 bound to the Q577R pocket revealed the loss of two hydrogen bonds, the repositioning of neighboring residues, and a small decrease in buried surface area. The Q577 mutations in an NL4-3 backbone decreased viral growth rates. Fitness was ultimately rescued in resistant viral pools by a suite of compensatory mutations in gp120 and gp41, of which we identified seven candidates from our sequencing data. CONCLUSIONS: These data show that PIE12-trimer exhibits a high barrier to resistance, as extended passaging was required to develop resistant virus with normal growth rates. The primary resistance mutation, Q577R/N/K, found in the conserved gp41 pocket, substantially decreases inhibitor affinity but also damages viral fitness, and candidate compensatory mutations in gp160 have been identified.
Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral/genética , HIV-1/efeitos dos fármacos , Peptídeos/farmacologia , Internalização do Vírus/efeitos dos fármacos , Linhagem Celular , Infecções por HIV/virologia , HIV-1/genética , Humanos , MutaçãoRESUMO
The introduction of solid-phase peptide synthesis in the 1960s improved the chemical synthesis of both the A- and B-chains of insulin and insulin analogs. However, the subsequent elaboration of the synthetic peptides to generate active hormones continues to be difficult and complex due in part to the hydrophobicity of the A-chain. Over the past decade, several groups have developed different methods to enhance A-chain solubility. Two of the most popular methods are use of isoacyl dipeptides, and the attachment of an A-chain C-terminal pentalysine tag with a base-labile 4-hydroxymethylbenzoic acid linker. These methods have proven effective but can be limited in scope depending on the peptide sequence of a specific insulin. Herein we describe an auxiliary approach to enhance the solubility of insulin-based peptides by incorporating a tri-lysine tag attached to a cleavable Fmoc-Ddae-OH linker. Incorporation of this linker, or "helping hand", on the N-terminus greatly improved the solubility of chicken insulin A-chain, which is analogous to human insulin, and allowed for coupling of the insulin A- and B-chain via directed disulfide bond formation. After formation of the insulin heterodimer, the linker and tag could be easily removed using a hydrazine buffer (pH 7.5) to obtain an overall 12.6% yield based on A-chain. This strategy offers an efficient method to enhance the solubility of hydrophobic insulin-based peptides as well as other traditionally difficult peptides.
Assuntos
Interações Hidrofóbicas e Hidrofílicas , Insulina/química , Insulina/síntese química , Animais , Ácido Benzoico/química , Dissulfetos/química , Fluorenos/química , Humanos , Insulina/farmacologia , Camundongos , Células NIH 3T3 , Técnicas de Síntese em Fase SólidaRESUMO
The application of solid-phase peptide synthesis and native chemical ligation in chemical protein synthesis (CPS) has enabled access to synthetic proteins that cannot be produced recombinantly, such as site-specific post-translationally modified or mirror-image proteins (D-proteins). However, CPS is commonly hampered by aggregation and insolubility of peptide segments and assembly intermediates. Installation of a solubilizing tag consisting of basic Lys or Arg amino acids can overcome these issues. Through the introduction of a traceless cleavable linker, the solubilizing tag can be selectively removed to generate native peptide. Here we describe the synthesis of a next-generation amine-reactive linker N-Fmoc-2-(7-amino-1-hydroxyheptylidene)-5,5-dimethylcyclohexane-1,3-dione (Fmoc-Ddap-OH) that can be used to selectively introduce semi-permanent solubilizing tags ("helping hands") onto Lys side chains of difficult peptides. This linker has improved stability compared to its predecessor, a property that can increase yields for multi-step syntheses with longer handling times. We also introduce a new linker cleavage protocol using hydroxylamine that greatly accelerates removal of the linker. The utility of this linker in CPS was demonstrated by the preparation of the synthetically challenging Shiga toxin subunit B (StxB) protein. This robust and easy-to-use linker is a valuable addition to the CPS toolbox for the production of challenging synthetic proteins.
Assuntos
Peptídeos/química , Subunidades Proteicas/síntese química , Toxina Shiga/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Sequência de Aminoácidos , Arginina/química , Cicloexanonas/química , Hidroxilamina/química , Lisina/química , SolubilidadeRESUMO
Peptides often suffer from short in vivo half-lives due to proteolysis and renal clearance that limit their therapeutic potential in many indications, necessitating pharmacokinetic (PK) enhancement. d-Peptides, composed of mirror-image d-amino acids, overcome proteolytic degradation but are still vulnerable to renal filtration due to their small size. If renal filtration could be slowed, d-peptides would be promising therapeutic agents for infrequent dosing, such as in extended-release depots. Here, we tether a diverse set of PK-enhancing cargoes to our potent, protease-resistant d-peptide HIV entry inhibitor, PIE12-trimer. This inhibitor panel provides an opportunity to evaluate the PK impact of the cargoes independently of proteolysis. While all the PK-enhancing strategies (PEGylation, acylation, alkylation, and cholesterol conjugation) improved in vivo half-life, cholesterol conjugation of PIE12-trimer dramatically improves both antiviral potency and half-life in rats, making it our lead anti-HIV drug candidate. We designed its chemical synthesis for large-scale production (CPT31) and demonstrated that the PK profile in cynomolgous monkeys supports future development of monthly or less frequent depot dosing in humans. CPT31 could address an urgent need in both HIV prevention and treatment.
Assuntos
Inibidores da Fusão de HIV/farmacocinética , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Fragmentos de Peptídeos/farmacocinética , Animais , Colesterol/química , Preparações de Ação Retardada , Portadores de Fármacos/química , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores da Fusão de HIV/administração & dosagem , Inibidores da Fusão de HIV/síntese química , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/fisiologia , Meia-Vida , Macaca fascicularis , Masculino , Modelos Animais , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/síntese química , Ratos , Ratos Sprague-Dawley , EstereoisomerismoRESUMO
The scope of chemical protein synthesis (CPS) continues to expand, driven primarily by advances in chemical ligation tools (e.g., reversible solubilizing groups and novel ligation chemistries). However, the design of an optimal synthesis route can be an arduous and fickle task due to the large number of theoretically possible, and in many cases problematic, synthetic strategies. In this perspective, we highlight recent CPS tool advances and then introduce a new and easy-to-use program, Aligator (Automated Ligator), for analyzing and designing the most efficient strategies for constructing large targets using CPS. As a model set, we selected the E. coli ribosomal proteins and associated factors for computational analysis. Aligator systematically scores and ranks all feasible synthetic strategies for a particular CPS target. The Aligator script methodically evaluates potential peptide segments for a target using a scoring function that includes solubility, ligation site quality, segment lengths, and number of ligations to provide a ranked list of potential synthetic strategies. We demonstrate the utility of Aligator by analyzing three recent CPS projects from our lab: TNFα (157 aa), GroES (97 aa), and DapA (312 aa). As the limits of CPS are extended, we expect that computational tools will play an increasingly important role in the efficient execution of ambitious CPS projects such as production of a mirror-image ribosome.
Assuntos
Biologia Computacional/métodos , Proteínas/síntese química , Software , Chaperonina 10/síntese química , Chaperonina 10/química , Chaperonina 60/síntese química , Chaperonina 60/química , Escherichia coli/metabolismo , Proteínas/química , Proteínas Ribossômicas/síntese química , Proteínas Ribossômicas/química , Fator de Necrose Tumoral alfa/síntese química , Fator de Necrose Tumoral alfa/químicaRESUMO
Mirror-image proteins (composed of D-amino acids) are promising therapeutic agents and drug discovery tools, but as synthesis of larger D-proteins becomes feasible, a major anticipated challenge is the folding of these proteins into their active conformations. In vivo, many large and/or complex proteins require chaperones like GroEL/ES to prevent misfolding and produce functional protein. The ability of chaperones to fold D-proteins is unknown. Here we examine the ability of GroEL/ES to fold a synthetic d-protein. We report the total chemical synthesis of a 312-residue GroEL/ES-dependent protein, DapA, in both L- and D-chiralities, the longest fully synthetic proteins yet reported. Impressively, GroEL/ES folds both L- and D-DapA. This work extends the limits of chemical protein synthesis, reveals ambidextrous GroEL/ES folding activity, and provides a valuable tool to fold d-proteins for drug development and mirror-image synthetic biology applications.
Assuntos
Enzimas/biossíntese , Enzimas/química , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Sequência de Aminoácidos , Aminoácidos/química , Fenômenos Biofísicos , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Enzimas/genética , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidroliases/biossíntese , Hidroliases/química , Hidroliases/genética , Modelos Moleculares , Dados de Sequência Molecular , Ácidos Picolínicos/metabolismo , Estrutura Quaternária de Proteína , EstereoisomerismoRESUMO
Although native chemical ligation (NCL) and related chemoselective ligation approaches provide an elegant method to stitch together unprotected peptides, the handling and purification of insoluble and aggregation-prone peptides and assembly intermediates create a bottleneck to routinely preparing large proteins by completely synthetic means. In this work, we introduce a new general tool, Fmoc-Ddae-OH, N-Fmoc-1-(4,4-dimethyl-2,6-dioxocyclo-hexylidene)-3-[2-(2-aminoethoxy)ethoxy]-propan-1-ol, a heterobifunctional traceless linker for temporarily attaching highly solubilizing peptide sequences ("helping hands") onto insoluble peptides. This tool is implemented in three simple and nearly quantitative steps: (i) on-resin incorporation of the linker at a Lys residue ε-amine, (ii) Fmoc-SPPS elongation of a desired solubilizing sequence, and (iii) in-solution removal of the solubilizing sequence using mild aqueous hydrazine to cleave the Ddae linker after NCL-based assembly. Successful introduction and removal of a Lys6 helping hand is first demonstrated in two model systems (Ebola virus C20 peptide and the 70-residue ribosomal protein L31). It is then applied to the challenging chemical synthesis of the 97-residue co-chaperonin GroES, which contains a highly insoluble C-terminal segment that is rescued by a helping hand. Importantly, the Ddae linker can be cleaved in one pot following NCL or desulfurization. The purity, structure, and chaperone activity of synthetic l-GroES were validated with respect to a recombinant control. Additionally, the helping hand enabled synthesis of d-GroES, which was inactive in a heterochiral mixture with recombinant GroEL, providing additional insight into chaperone specificity. Ultimately, this simple, robust, and easy-to-use tool is expected to be broadly applicable for the synthesis of challenging peptides and proteins.
Assuntos
Proteínas/química , Proteínas/síntese química , Sequência de Aminoácidos , Técnicas de Química Sintética , Fluorenos/química , Dobramento de Proteína , Proteínas Ribossômicas/síntese química , Proteínas Ribossômicas/química , Solubilidade , Proteínas Virais/químicaRESUMO
Tumor Necrosis Factor alpha (TNFα) is an inflammatory cytokine that plays a central role in the pathogenesis of chronic inflammatory disease. Here we describe the chemical synthesis of l-TNFα along with the mirror-image d-protein for use as a phage display target. The synthetic strategy utilized native chemical ligation and desulfurization to unite three peptide segments, followed by oxidative folding to assemble the 52 kDa homotrimeric protein. This synthesis represents the foundational step for discovering an inhibitory d-peptide with the potential to improve current anti-TNFα therapeutic strategies.
Assuntos
Biblioteca de Peptídeos , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/síntese química , Modelos Moleculares , Estrutura Secundária de Proteína , EstereoisomerismoRESUMO
Chemical protein synthesis (CPS), in which custom peptide segments of ~20-60 aa are produced by solid-phase peptide synthesis and then stitched together through sequential ligation reactions, is an increasingly popular technique. The workflow of CPS is often depicted with a "bracket" style diagram detailing the starting segments and the order of all ligation, desulfurization, and/or deprotection steps to obtain the product protein. Brackets are invaluable tools for comparing multiple possible synthetic approaches and serve as blueprints throughout a synthesis. Drawing CPS brackets by hand or in standard graphics software, however, is a painstaking and error-prone process. Furthermore, the CPS field lacks a standard bracket format, making side-by-side comparisons difficult. To address these problems, we developed BracketMaker, an open-source Python program with built-in graphic user interface (GUI) for the rapid creation and analysis of CPS brackets. BracketMaker contains a custom graphics engine which converts a text string (a protein sequence annotated with reaction steps, introduced herein as a standardized format for brackets) into a high-quality vector or PNG image. To aid with new syntheses, BracketMaker's "AutoBracket" tool automatically performs retrosynthetic analysis on a set of segments to draft and rank all possible ligation orders using standard native chemical ligation, protection, and desulfurization techniques. AutoBracket, in conjunction with an improved version of our previously reported Automated Ligator (Aligator) program, provides a pipeline to rapidly develop synthesis plans for a given protein sequence. We demonstrate the application of both programs to develop a blueprint for 65 proteins of the minimal Escherichia coli ribosome.
Assuntos
Software , Proteínas/química , Proteínas/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Peptídeos/química , Peptídeos/síntese químicaRESUMO
HIV-1 delivers its genetic material to infect a cell after fusion of the viral and host cell membranes, which takes place after the viral envelope (Env) binds host receptor and co-receptor proteins. Binding of host receptor CD4 to Env results in conformational changes that allow interaction with a host co-receptor (CCR5 or CXCR4). Further conformational rearrangements result in an elongated pre-hairpin intermediate structure in which Env is anchored to the viral membrane by its transmembrane region and to the host cell membrane by its fusion peptide. Although budding virions can be readily imaged by electron tomography (ET) of HIV-1-infected tissues and cultured cells, virions that are fusing (attached to host cells via pre-hairpin intermediates) are not normally visualized, perhaps because the process of membrane fusion is too fast to capture by EM. To image virions during fusion, we used fusion inhibitors to prevent downstream conformational changes in Env that lead to membrane fusion, thereby trapping HIV-1 virions linked to target cells by prehairpin intermediates. ET of HIV-1 pseudovirions bound to CD4+/CCR5+ TZM-bl cells revealed presumptive pre-hairpin intermediates as 2-4 narrow spokes linking a virion to the cell surface. To extend these results to a more physiological setting, we used ET to image tissues and organs derived from humanized bone marrow, liver, thymus (BLT) mice infected with HIV-1 and then treated with CPT31, a high-affinity D-peptide fusion inhibitor linked to cholesterol. Trapped HIV-1 virions were found in all tissues studied (small intestine, mesenteric lymph nodes, spleen, and bone marrow), and spokes representing pre-hairpin intermediates linking trapped virions to cell surfaces were similar in structure and number to those seen in the previous pseudovirus and cultured cell ET study.
RESUMO
BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) undergoes a protease-mediated maturation process that is required for its infectivity. Little is known about how the physical properties of viral particles change during maturation and how these changes affect the viral lifecycle. Using Atomic Force Microscopy (AFM), we previously discovered that HIV undergoes a "stiffness switch", a dramatic reduction in particle stiffness during maturation that is mediated by the viral Envelope (Env) protein. RESULTS: In this study, we show that transmembrane-anchored Env cytoplasmic tail (CT) domain is sufficient to regulate the particle stiffness of immature HIV-1. Using this construct expressed in trans with viral Env lacking the CT domain, we show that increasing particle stiffness reduces viral entry activity in immature virions. A similar effect was also observed for immature HIV-1 pseudovirions containing Env from vesicular stomatitis virus. CONCLUSIONS: This linkage between particle stiffness and viral entry activity illustrates a novel level of regulation for viral replication, providing the first evidence for a biological role of virion physical properties and suggesting a new inhibitory strategy.
Assuntos
HIV-1/patogenicidade , Vírion/patogenicidade , Internalização do Vírus , Humanos , Microscopia de Força Atômica , Modelos Biológicos , Proteínas da Matriz Viral/fisiologia , Vírion/química , Replicação Viral/fisiologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/fisiologiaRESUMO
BACKGROUND: The limited success of recent HIV topical pre-exposure prophylaxis clinical trials highlights the need for more predictive models of drug efficacy that better simulate what may happen during sexual exposure. To address this gap, we developed complementary in vitro models to evaluate the ability of drugs to retain anti-HIV activity if cells were washed with seminal plasma (simulating what may happen following exposure to ejaculate), and to protect drug-naive T cells (representing newly recruited immune cells) co-cultured with explants that had been pretreated with drug. We focused on tenofovir disoproxil fumarate (TDF), the non-nucleoside reverse transcriptase inhibitors dapivirine (DPV) and IQP-0528, and the entry inhibitors maraviroc (MVC) and the D-peptide chol-PIE-12 trimer (PIE12). Studies were extended to macaques and the ability of cervical biopsies obtained from animals treated with an intravaginal ring formulation of IQP-0528 to protect ex vivo co-cultured T cells was determined. The antiviral activity of cervicovaginal lavage samples against a primary Clade C isolate was also measured and correlated with drug levels. RESULTS: Cells exposed to TDF were equally protected from HIV whether or not the drug-treated cells were washed with medium or seminal plasma prior to challenge. In contrast, several-fold higher concentrations of NNRTIs and entry inhibitors were needed to attain similar levels of HIV inhibition following a wash with seminal plasma. Conversely, the NNRTIs and PIE12, but not TDF or MVC, were effectively transferred from ex vivo treated explants and protected co-cultured T cells. Biopsies obtained from IQP-0528 ring-treated macaques also protected co-cultured T cells with viral inhibition ranging from 42-72%. Antiviral activity correlated with the concentration of drug recovered. Combinations of TDF with IQP-0528 protected in both in vitro models. CONCLUSIONS: Together, these models suggest that intracellularly retained drugs such as TDF may protect resident immune cells following coitus but sustained delivery may be required to protect immune cells subsequently recruited into the genital tract. Sustained delivery may also be critical for NNRTIs, which are rapidly transported out of cells and could be lost following sexual intercourse. An ideal approach may be a combination of drugs with complementary bioavailability profiles formulated for sustained delivery.
Assuntos
Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/farmacocinética , Quimioprevenção/métodos , Transmissão de Doença Infecciosa/prevenção & controle , Avaliação Pré-Clínica de Medicamentos/métodos , Infecções por HIV/prevenção & controle , Linfócitos T/virologia , Animais , Técnicas de Cocultura/métodos , Modelos Animais de Doenças , Feminino , Infecções por HIV/transmissão , Macaca , Técnicas de Cultura de Órgãos/métodosRESUMO
[This corrects the article DOI: 10.3389/fimmu.2022.1046574.].
RESUMO
The success of mRNA-based vaccines during the Covid-19 pandemic has highlighted the value of this new platform for vaccine development against infectious disease. However, the CD8+ T cell response remains modest with mRNA vaccines, and these do not induce mucosal immunity, which would be needed to prevent viral spread in the healthy population. To address this drawback, we developed a dendritic cell targeting mucosal vaccination vector, the homopentameric STxB. Here, we describe the highly efficient chemical synthesis of the protein, and its in vitro folding. This straightforward preparation led to a synthetic delivery tool whose biophysical and intracellular trafficking characteristics were largely indistinguishable from recombinant STxB. The chemical approach allowed for the generation of new variants with bioorthogonal handles. Selected variants were chemically coupled to several types of antigens derived from the mucosal viruses SARS-CoV-2 and type 16 human papillomavirus. Upon intranasal administration in mice, mucosal immunity, including resident memory CD8+ T cells and IgA antibodies was induced against these antigens. Our study thereby identifies a novel synthetic antigen delivery tool for mucosal vaccination with an unmatched potential to respond to an urgent medical need.
Assuntos
Linfócitos T CD8-Positivos , Pandemias , Camundongos , Humanos , Animais , Vacinação , Vacinas Sintéticas , Antígenos , Anticorpos AntiviraisRESUMO
Recent iPrEx clinical trial results provided evidence that systemic preexposure prophylaxis (PrEP) with emtricitabine (FTC) and tenofovir disoproxil fumarate (TDF) can partially prevent rectal HIV transmission in humans. Similarly, we have previously demonstrated that systemic administration of the same FTC-TDF combination efficiently prevented rectal transmission in humanized bone marrow/liver/thymus (BLT) mice. The CAPRISA 004 trial recently demonstrated that topical application of the tenofovir could partially prevent vaginal HIV-1 transmission in humans. To further validate the usefulness of the BLT mouse model for testing HIV prevention strategies, we evaluated the topical administration of tenofovir as used in CAPRISA 004 to prevent vaginal HIV transmission in BLT mice. Our results demonstrate that vaginally administered 1% tenofovir significantly reduced HIV transmission in BLT mice (P = 0.002). Together with the results obtained after systemic antiretroviral PrEP, these topical inhibitor data serve to validate the use of humanized BLT mice to evaluate both systemic and topical inhibitors of HIV transmission. Based on these observations, we tested six additional microbicide candidates for their ability to prevent vaginal HIV transmission: a C-peptide fusion inhibitor (C52L), a membrane-disrupting amphipathic peptide inhibitor (C5A), a trimeric d-peptide fusion inhibitor (PIE12-Trimer), a combination of reverse transcriptase inhibitors (FTC-TDF), a thioester zinc finger inhibitor (TC247), and a small-molecule Rac inhibitor (NSC23766). No protection was seen with the Rac inhibitor NSC23766. The thioester compound TC247 offered partial protection. Significant protection was afforded by FTC-TDF, and complete protection was offered by three different peptide inhibitors tested. Our results demonstrate that these effective topical inhibitors have excellent potential to prevent vaginal HIV transmission in humans.