Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell ; 185(21): 4023-4037.e18, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36174579

RESUMO

High-throughput RNA sequencing offers broad opportunities to explore the Earth RNA virome. Mining 5,150 diverse metatranscriptomes uncovered >2.5 million RNA virus contigs. Analysis of >330,000 RNA-dependent RNA polymerases (RdRPs) shows that this expansion corresponds to a 5-fold increase of the known RNA virus diversity. Gene content analysis revealed multiple protein domains previously not found in RNA viruses and implicated in virus-host interactions. Extended RdRP phylogeny supports the monophyly of the five established phyla and reveals two putative additional bacteriophage phyla and numerous putative additional classes and orders. The dramatically expanded phylum Lenarviricota, consisting of bacterial and related eukaryotic viruses, now accounts for a third of the RNA virome. Identification of CRISPR spacer matches and bacteriolytic proteins suggests that subsets of picobirnaviruses and partitiviruses, previously associated with eukaryotes, infect prokaryotic hosts.


Assuntos
Bacteriófagos , Vírus de RNA , Bacteriófagos/genética , RNA Polimerases Dirigidas por DNA/genética , Genoma Viral , Filogenia , RNA , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética , Viroma
2.
Nature ; 616(7956): 384-389, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37020015

RESUMO

The widespread TnpB proteins of IS200/IS605 transposon family have recently emerged as the smallest RNA-guided nucleases capable of targeted genome editing in eukaryotic cells1,2. Bioinformatic analysis identified TnpB proteins as the likely predecessors of Cas12 nucleases3-5, which along with Cas9 are widely used for targeted genome manipulation. Whereas Cas12 family nucleases are well characterized both biochemically and structurally6, the molecular mechanism of TnpB remains unknown. Here we present the cryogenic-electron microscopy structures of the Deinococcus radiodurans TnpB-reRNA (right-end transposon element-derived RNA) complex in DNA-bound and -free forms. The structures reveal the basic architecture of TnpB nuclease and the molecular mechanism for DNA target recognition and cleavage that is supported by biochemical experiments. Collectively, these results demonstrate that TnpB represents the minimal structural and functional core of the Cas12 protein family and provide a framework for developing TnpB-based genome editing tools.


Assuntos
Proteínas Associadas a CRISPR , Elementos de DNA Transponíveis , Deinococcus , Endonucleases , Edição de Genes , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/classificação , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/ultraestrutura , Sistemas CRISPR-Cas/genética , Microscopia Crioeletrônica , Deinococcus/enzimologia , Deinococcus/genética , DNA/química , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Elementos de DNA Transponíveis/genética , Endonucleases/química , Endonucleases/classificação , Endonucleases/metabolismo , Endonucleases/ultraestrutura , Evolução Molecular , Edição de Genes/métodos , RNA Guia de Sistemas CRISPR-Cas
3.
Nature ; 599(7886): 692-696, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619744

RESUMO

Transposition has a key role in reshaping genomes of all living organisms1. Insertion sequences of IS200/IS605 and IS607 families2 are among the simplest mobile genetic elements and contain only the genes that are required for their transposition and its regulation. These elements encode tnpA transposase, which is essential for mobilization, and often carry an accessory tnpB gene, which is dispensable for transposition. Although the role of TnpA in transposon mobilization of IS200/IS605 is well documented, the function of TnpB has remained largely unknown. It had been suggested that TnpB has a role in the regulation of transposition, although no mechanism for this has been established3-5. A bioinformatic analysis indicated that TnpB might be a predecessor of the CRISPR-Cas9/Cas12 nucleases6-8. However, no biochemical activities have been ascribed to TnpB. Here we show that TnpB of Deinococcus radiodurans ISDra2 is an RNA-directed nuclease that is guided by an RNA, derived from the right-end element of a transposon, to cleave DNA next to the 5'-TTGAT transposon-associated motif. We also show that TnpB could be reprogrammed to cleave DNA target sites in human cells. Together, this study expands our understanding of transposition mechanisms by highlighting the role of TnpB in transposition, experimentally confirms that TnpB is a functional progenitor of CRISPR-Cas nucleases and establishes TnpB as a prototype of a new system for genome editing.


Assuntos
Elementos de DNA Transponíveis/genética , Deinococcus/enzimologia , Deinococcus/genética , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , RNA/genética , Sequência de Bases , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Escherichia coli/genética , Edição de Genes , Células HEK293 , Humanos , Motivos de Nucleotídeos
4.
Nucleic Acids Res ; 52(6): 3234-3248, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38261981

RESUMO

Cas9 and Cas12 nucleases of class 2 CRISPR-Cas systems provide immunity in prokaryotes through RNA-guided cleavage of foreign DNA. Here we characterize a set of compact CRISPR-Cas12m (subtype V-M) effector proteins and show that they provide protection against bacteriophages and plasmids through the targeted DNA binding rather than DNA cleavage. Biochemical assays suggest that Cas12m effectors can act as roadblocks inhibiting DNA transcription and/or replication, thereby triggering interference against invaders. Cryo-EM structure of Gordonia otitidis (Go) Cas12m ternary complex provided here reveals the structural mechanism of DNA binding ensuring interference. Harnessing GoCas12m innate ability to bind DNA target we fused it with adenine deaminase TadA-8e and showed an efficient A-to-G editing in Escherichia coli and human cells. Overall, this study expands our understanding of the functionally diverse Cas12 protein family, revealing DNA-binding dependent interference mechanism of Cas12m effectors that could be harnessed for engineering of compact base-editing tools.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , DNA/genética , Endonucleases/metabolismo , Plasmídeos/genética , Escherichia coli/genética , Escherichia coli/metabolismo
5.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38507682

RESUMO

MOTIVATION: Reliable prediction of protein thermostability from its sequence is valuable for both academic and industrial research. This prediction problem can be tackled using machine learning and by taking advantage of the recent blossoming of deep learning methods for sequence analysis. These methods can facilitate training on more data and, possibly, enable the development of more versatile thermostability predictors for multiple ranges of temperatures. RESULTS: We applied the principle of transfer learning to predict protein thermostability using embeddings generated by protein language models (pLMs) from an input protein sequence. We used large pLMs that were pre-trained on hundreds of millions of known sequences. The embeddings from such models allowed us to efficiently train and validate a high-performing prediction method using over one million sequences that we collected from organisms with annotated growth temperatures. Our method, TemStaPro (Temperatures of Stability for Proteins), was used to predict thermostability of CRISPR-Cas Class II effector proteins (C2EPs). Predictions indicated sharp differences among groups of C2EPs in terms of thermostability and were largely in tune with previously published and our newly obtained experimental data. AVAILABILITY AND IMPLEMENTATION: TemStaPro software and the related data are freely available from https://github.com/ievapudz/TemStaPro and https://doi.org/10.5281/zenodo.7743637.


Assuntos
Aprendizado de Máquina , Proteínas , Proteínas/metabolismo , Software , Sequência de Aminoácidos , Idioma
6.
PLoS Biol ; 19(11): e3001442, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34752450

RESUMO

The archaeal tailed viruses (arTV), evolutionarily related to tailed double-stranded DNA (dsDNA) bacteriophages of the class Caudoviricetes, represent the most common isolates infecting halophilic archaea. Only a handful of these viruses have been genomically characterized, limiting our appreciation of their ecological impacts and evolution. Here, we present 37 new genomes of haloarchaeal tailed virus isolates, more than doubling the current number of sequenced arTVs. Analysis of all 63 available complete genomes of arTVs, which we propose to classify into 14 new families and 3 orders, suggests ancient divergence of archaeal and bacterial tailed viruses and points to an extensive sharing of genes involved in DNA metabolism and counterdefense mechanisms, illuminating common strategies of virus-host interactions with tailed bacteriophages. Coupling of the comparative genomics with the host range analysis on a broad panel of haloarchaeal species uncovered 4 distinct groups of viral tail fiber adhesins controlling the host range expansion. The survey of metagenomes using viral hallmark genes suggests that the global architecture of the arTV community is shaped through recurrent transfers between different biomes, including hypersaline, marine, and anoxic environments.


Assuntos
Vírus de Archaea/classificação , Vírus de Archaea/genética , Evolução Biológica , Variação Genética , Vírus de Archaea/metabolismo , DNA/genética , DNA Viral/genética , Genoma Viral , Especificidade de Hospedeiro , Mutação/genética , Filogenia , Células Procarióticas/virologia , Proteínas Virais/genética
7.
Nucleic Acids Res ; 48(18): 10142-10156, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32976577

RESUMO

B-family DNA polymerases (PolBs) represent the most common replicases. PolB enzymes that require RNA (or DNA) primed templates for DNA synthesis are found in all domains of life and many DNA viruses. Despite extensive research on PolBs, their origins and evolution remain enigmatic. Massive accumulation of new genomic and metagenomic data from diverse habitats as well as availability of new structural information prompted us to conduct a comprehensive analysis of the PolB sequences, structures, domain organizations, taxonomic distribution and co-occurrence in genomes. Based on phylogenetic analysis, we identified a new, widespread group of bacterial PolBs that are more closely related to the catalytically active N-terminal half of the eukaryotic PolEpsilon (PolEpsilonN) than to Escherichia coli Pol II. In Archaea, we characterized six new groups of PolBs. Two of them show close relationships with eukaryotic PolBs, the first one with PolEpsilonN, and the second one with PolAlpha, PolDelta and PolZeta. In addition, structure comparisons suggested common origin of the catalytically inactive C-terminal half of PolEpsilon (PolEpsilonC) and PolAlpha. Finally, in certain archaeal PolBs we discovered C-terminal Zn-binding domains closely related to those of PolAlpha and PolEpsilonC. Collectively, the obtained results allowed us to propose a scenario for the evolution of eukaryotic PolBs.


Assuntos
DNA Polimerase beta/química , DNA Polimerase beta/classificação , Eucariotos/enzimologia , Evolução Molecular , Archaea/enzimologia , Bactérias/enzimologia , Vírus de DNA/enzimologia , Bases de Dados de Proteínas
8.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298953

RESUMO

A novel siphovirus, vB_PagS_MED16 (MED16) was isolated in Lithuania using Pantoea agglomerans strain BSL for the phage propagation. The double-stranded DNA genome of MED16 (46,103 bp) contains 73 predicted open reading frames (ORFs) encoding proteins, but no tRNA. Our comparative sequence analysis revealed that 26 of these ORFs code for unique proteins that have no reliable identity when compared to database entries. Based on phylogenetic analysis, MED16 represents a new genus with siphovirus morphology. In total, 35 MED16 ORFs were given a putative functional annotation, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. In addition, a gene encoding a preQ0 DNA deoxyribosyltransferase (DpdA) is present in the genome of MED16 and the LC-MS/MS analysis indicates 2'-deoxy-7-amido-7-deazaguanosine (dADG)-modified phage DNA, which, to our knowledge, has never been experimentally validated in genomes of Pantoea phages. Thus, the data presented in this study provide new information on Pantoea-infecting viruses and offer novel insights into the diversity of DNA modifications in bacteriophages.


Assuntos
DNA Viral , Genoma Viral , Guanosina , Fases de Leitura Aberta , Pantoea/virologia , Siphoviridae , Proteínas Virais , DNA Viral/genética , DNA Viral/metabolismo , Guanosina/análogos & derivados , Guanosina/química , Guanosina/metabolismo , Siphoviridae/genética , Siphoviridae/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
Nucleic Acids Res ; 44(10): 4551-64, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27112572

RESUMO

Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication.


Assuntos
Replicação do DNA , Vírus de DNA/genética , Genoma Viral , Proteínas Virais/genética , DNA , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Primase/genética , DNA Primase/metabolismo , DNA Topoisomerases/genética , DNA Topoisomerases/metabolismo , Transferência Genética Horizontal , Tamanho do Genoma , Interações Hospedeiro-Patógeno/genética , Filogenia , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo
11.
Bioinformatics ; 30(15): 2093-7, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24747220

RESUMO

MOTIVATION: Herpesviruses are large DNA viruses causing a variety of diseases in humans and animals. To develop effective treatment, it is important to understand the mechanisms of their replication. One of the components of the herpesviral DNA replication system is a helicase-primase complex, consisting of UL5 (helicase), UL52 (primase) and UL8. UL8 is an essential herpesviral protein involved in multiple protein-protein interactions. Intriguingly, so far no UL8 homologs outside of herpesviruses could be identified. Moreover, nothing is known about its structure or domain organization. RESULTS: Here, combining sensitive homology detection methods and homology modeling, we found that the UL8 protein family is related to B-family polymerases. In the course of evolution, UL8 has lost the active site and has undergone a reduction of DNA-binding motifs. The loss of active site residues explains the failure to detect any catalytic activity of UL8. A structural model of human herpes virus 1 UL8 constructed as part of the study is consistent with the mutation data targeting its interaction with primase UL52. It also provides a platform for studying multiple interactions that UL8 is involved in. The two other components of helicase-primase complex show evolutionary links with a newly characterized human primase that also has DNA polymerase activity (PrimPol) and the Pif1 helicase, respectively. The role of these enzymes in recovering stalled replication forks suggests mechanistic and functional similarities with herpesviral proteins. CONTACT: venclovas@ibt.lt SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , DNA Primase/química , DNA Primase/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Herpesvirus Humano 1/enzimologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Biologia Computacional , Sequência Conservada , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , Ativação Enzimática , Evolução Molecular , Herpesvirus Humano 1/fisiologia , Humanos , Modelos Moleculares , Enzimas Multifuncionais/química , Enzimas Multifuncionais/metabolismo , Replicação Viral
12.
Extremophiles ; 18(1): 131-45, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24287927

RESUMO

GD-95 lipase from Geobacillus sp. strain 95 and its modified variants lacking N-terminal signal peptide and/or 10 or 20 C-terminal amino acids were successfully cloned, expressed and purified. To our knowledge, GD-95 lipase precursor (Pre-GD-95) is the first Geobacillus lipase possessing more than 80% lipolytic activity at 5 °C. It has maximum activity at 55 °C and displays a broad pH activity range. GD-95 lipase was shown to hydrolyze p-NP dodecanoate, tricaprylin and canola oil better than other analyzed substrates. Structural and sequence alignments of bacterial lipases and GD-95 lipase revealed that the C-terminus forms an α helix, which is a conserved structure in lipases from Pseudomonas, Clostridium or Staphylococcus bacteria. This work demonstrates that 10 and 20 C-terminal amino acids of GD-95 lipase significantly affect stability and other physicochemical properties of this enzyme, which has never been reported before and can help create lipases with more specific properties for industrial application. GD-95 lipase and its modified variants GD-95-10 can be successfully applied to biofuel production, in leather and pulp industries, for the production of cosmetics or perfumes. These lipases are potential biocatalysts in processes, which require extreme conditions: low or high temperature, strongly acidic or alkaline environment and various organic solvents.


Assuntos
Proteínas de Bactérias/genética , Geobacillus/enzimologia , Lipase/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Geobacillus/genética , Lipase/química , Lipase/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Especificidade por Substrato
13.
Bioinformatics ; 28(24): 3186-90, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23097418

RESUMO

MOTIVATION: Eukaryote-infecting nucleo-cytoplasmic large DNA viruses (NCLDVs) feature some of the largest genomes in the viral world. These viruses typically do not strongly depend on the host DNA replication systems. In line with this observation, a number of essential DNA replication proteins, such as DNA polymerases, primases, helicases and ligases, have been identified in the NCLDVs. One other ubiquitous component of DNA replisomes is the single-stranded DNA-binding (SSB) protein. Intriguingly, no NCLDV homologs of canonical OB-fold-containing SSB proteins had previously been detected. Only in poxviruses, one of seven NCLDV families, I3 was identified as the SSB protein. However, whether I3 is related to any known protein structure has not yet been established. RESULTS: Here, we addressed the case of 'missing' canonical SSB proteins in the NCLDVs and also probed evolutionary origins of the I3 family. Using advanced computational methods, in four NCLDV families, we detected homologs of the bacteriophage T7 SSB protein (gp2.5). We found the properties of these homologs to be consistent with the SSB function. Moreover, we implicated specific residues in single-stranded DNA binding. At the same time, we found no evolutionary link between the T7 gp2.5-like NCLDV SSB homologs and the poxviral SSB protein (I3). Instead, we identified a distant relationship between I3 and small protein B (SmpB), a bacterial RNA-binding protein. Thus, apparently, the NCLDVs have the two major distinct sets of SSB proteins having bacteriophage and bacterial origins, respectively.


Assuntos
Vírus de DNA/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/classificação , Proteínas Virais/química , Proteínas Virais/classificação , Sequência de Aminoácidos , Sítios de Ligação , Vírus de DNA/classificação , Proteínas de Ligação a DNA/genética , Evolução Molecular , Dados de Sequência Molecular , Poxviridae/genética , Proteínas Virais/genética
14.
Nucleic Acids Res ; 39(19): 8291-305, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21742758

RESUMO

Genome duplication in free-living cellular organisms is performed by DNA replicases that always include a DNA polymerase, a DNA sliding clamp and a clamp loader. What are the evolutionary solutions for DNA replicases associated with smaller genomes? Are there some general principles? To address these questions we analyzed DNA replicases of double-stranded (ds) DNA viruses. In the process we discovered highly divergent B-family DNA polymerases in phiKZ-like phages and remote sliding clamp homologs in Ascoviridae family and Ma-LMM01 phage. The analysis revealed a clear dependency between DNA replicase components and the viral genome size. As the genome size increases, viruses universally encode their own DNA polymerases and frequently have homologs of DNA sliding clamps, which sometimes are accompanied by clamp loader subunits. This pattern is highly non-random. The absence of sliding clamps in large viral genomes usually coincides with the presence of atypical polymerases. Meanwhile, sliding clamp homologs, not accompanied by clamp loaders, have an elevated positive electrostatic potential, characteristic of non-ring viral processivity factors that bind the DNA directly. Unexpectedly, we found that similar electrostatic properties are shared by the eukaryotic 9-1-1 clamp subunits, Hus1 and, to a lesser extent, Rad9, also suggesting the possibility of direct DNA binding.


Assuntos
Vírus de DNA/genética , DNA Polimerase Dirigida por DNA/química , Genoma Viral , Proteínas Virais/química , Sequência de Aminoácidos , Vírus de DNA/enzimologia , DNA Polimerase Dirigida por DNA/classificação , DNA Polimerase Dirigida por DNA/genética , Tamanho do Genoma , Genômica , Dados de Sequência Molecular , Alinhamento de Sequência , Eletricidade Estática , Proteínas Virais/classificação , Proteínas Virais/genética
15.
Front Microbiol ; 12: 699140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267740

RESUMO

Bam35 and related betatectiviruses are tail-less bacteriophages that prey on members of the Bacillus cereus group. These temperate viruses replicate their linear genome by a protein-primed mechanism. In this work, we have identified and characterized the product of the viral ORF2 as a single-stranded DNA binding protein (hereafter B35SSB). B35SSB binds ssDNA with great preference over dsDNA or RNA in a sequence-independent, highly cooperative manner that results in a non-specific stimulation of DNA replication. We have also identified several aromatic and basic residues, involved in base-stacking and electrostatic interactions, respectively, that are required for effective protein-ssDNA interaction. Although SSBs are essential for DNA replication in all domains of life as well as many viruses, they are very diverse proteins. However, most SSBs share a common structural domain, named OB-fold. Protein-primed viruses could constitute an exception, as no OB-fold DNA binding protein has been reported. Based on databases searches as well as phylogenetic and structural analyses, we showed that B35SSB belongs to a novel and independent group of SSBs. This group contains proteins encoded by protein-primed viral genomes from unrelated viruses, spanning betatectiviruses and Φ29 and close podoviruses, and they share a conserved pattern of secondary structure. Sensitive searches and structural predictions indicate that B35SSB contains a conserved domain resembling a divergent OB-fold, which would constitute the first occurrence of an OB-fold-like domain in a protein-primed genome.

16.
Biochim Biophys Acta Gen Subj ; 1865(10): 129967, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34324954

RESUMO

BACKGROUND: Bacterial viruses (bacteriophages or phages) have a lot of uncharacterized genes, which hinders the progress of their applied research. Functional characterization of these genes is often hampered by a lack of suitable methods for engineering of phage genomes. METHODS: Phages vB_EcoM_Alf5 (Alf5) and VB_EcoM_VpaE1 (VpaE1) were used as the model phages of Felixounovirus genus. The phage-coded properties were predicted by bioinformatics analysis. The 'pull-down' assay was used for detection of protein-protein interactions. Primer extension analysis was used for the DNA polymerase (DNAP) activity testing. Bacteriophage lambda Redγßα-assisted homologous recombination was used for construction of phage mutants. RESULTS: Bioinformatics analysis showed that felixounoviruses encode DNA polymerase, which is homologous to the T7 DNAP. We found that the Escherichia coli thioredoxin A (TrxA) in vitro interacts with the predicted DNAP of Alf5 phage (gp096) and enhances its activity. Phages Alf5 and VpaE1 do not grow on E. coli strains lacking trxA gene unless it is provided in trans. This feature was used for construction of the deletion/insertion mutants of non-essential genes of felixounoviruses. CONCLUSION: DNA replication of phages from Felixonuvirus genus depends on the host trxA, which therefore may be used as a molecular marker for their genome engineering. GENERAL SIGNIFICANCE: We present a proof-of-principle of a strategy for targeted engineering of bacteriophages of Felixounovirus genus. The method developed here will facilitate the basic and applied research of this unexplored phage group. Furthermore, detected functional interactions between the phage and host proteins will be significant for basic research of DNA replication.


Assuntos
Bacteriófagos/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Engenharia Genética , Tiorredoxinas/genética , Biomarcadores
17.
Nat Microbiol ; 5(10): 1262-1270, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32690954

RESUMO

RNA viruses in aquatic environments remain poorly studied. Here, we analysed the RNA virome from approximately 10 l water from Yangshan Deep-Water Harbour near the Yangtze River estuary in China and identified more than 4,500 distinct RNA viruses, doubling the previously known set of viruses. Phylogenomic analysis identified several major lineages, roughly, at the taxonomic ranks of class, order and family. The 719-member-strong Yangshan virus assemblage is the sister clade to the expansive class Alsuviricetes and consists of viruses with simple genomes that typically encode only RNA-dependent RNA polymerase (RdRP), capping enzyme and capsid protein. Several clades within the Yangshan assemblage independently evolved domain permutation in the RdRP. Another previously unknown clade shares ancestry with Potyviridae, the largest known plant virus family. The 'Aquatic picorna-like viruses/Marnaviridae' clade was greatly expanded, with more than 800 added viruses. Several RdRP-linked protein domains not previously detected in any RNA viruses were identified, such as the small ubiquitin-like modifier (SUMO) domain, phospholipase A2 and PrsW-family protease domain. Multiple viruses utilize alternative genetic codes implying protist (especially ciliate) hosts. The results reveal a vast RNA virome that includes many previously unknown groups. However, phylogenetic analysis of the RdRPs supports the previously established five-branch structure of the RNA virus evolutionary tree, with no additional phyla.


Assuntos
Genoma Viral , Metagenoma , Metagenômica , Vírus de RNA/classificação , Vírus de RNA/genética , Sequência de Aminoácidos , Biodiversidade , China , Biologia Computacional/métodos , Evolução Molecular , Ordem dos Genes , Metagenômica/métodos , Filogenia , Proteínas Virais/química , Proteínas Virais/genética , Microbiologia da Água
18.
Nat Commun ; 11(1): 5512, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139742

RESUMO

Bacterial Cas9 nucleases from type II CRISPR-Cas antiviral defence systems have been repurposed as genome editing tools. Although these proteins are found in many microbes, only a handful of variants are used for these applications. Here, we use bioinformatic and biochemical analyses to explore this largely uncharacterized diversity. We apply cell-free biochemical screens to assess the protospacer adjacent motif (PAM) and guide RNA (gRNA) requirements of 79 Cas9 proteins, thus identifying at least 7 distinct gRNA classes and 50 different PAM sequence requirements. PAM recognition spans the entire spectrum of T-, A-, C-, and G-rich nucleotides, from single nucleotide recognition to sequence strings longer than 4 nucleotides. Characterization of a subset of Cas9 orthologs using purified components reveals additional biochemical diversity, including both narrow and broad ranges of temperature dependence, staggered-end DNA target cleavage, and a requirement for long stretches of homology between gRNA and DNA target. Our results expand the available toolset of RNA-programmable CRISPR-associated nucleases.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Biologia Computacional , Clivagem do DNA , RNA Guia de Cinetoplastídeos/metabolismo , Homologia de Sequência do Ácido Nucleico
19.
Nat Commun ; 10(1): 3425, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366885

RESUMO

Single-stranded (ss) DNA viruses are a major component of the earth virome. In particular, the circular, Rep-encoding ssDNA (CRESS-DNA) viruses show high diversity and abundance in various habitats. By combining sequence similarity network and phylogenetic analyses of the replication proteins (Rep) belonging to the HUH endonuclease superfamily, we show that the replication machinery of the CRESS-DNA viruses evolved, on three independent occasions, from the Reps of bacterial rolling circle-replicating plasmids. The CRESS-DNA viruses emerged via recombination between such plasmids and cDNA copies of capsid genes of eukaryotic positive-sense RNA viruses. Similarly, the rep genes of prokaryotic DNA viruses appear to have evolved from HUH endonuclease genes of various bacterial and archaeal plasmids. Our findings also suggest that eukaryotic polyomaviruses and papillomaviruses with dsDNA genomes have evolved via parvoviruses from CRESS-DNA viruses. Collectively, our results shed light on the complex evolutionary history of a major class of viruses revealing its polyphyletic origins.


Assuntos
Archaea/genética , Bactérias/genética , DNA Viral/genética , Evolução Molecular , Plasmídeos/genética , Sequência de Bases , DNA Helicases/genética , DNA de Cadeia Simples/genética , Genoma Viral/genética , Papillomaviridae/genética , Parvovirus/genética , Polyomavirus/genética , Alinhamento de Sequência
20.
Viruses ; 10(4)2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642587

RESUMO

Numerous metagenomic studies have uncovered a remarkable diversity of circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses, the majority of which are uncultured and unclassified. Unlike capsid proteins, the Reps show significant similarity across different groups of CRESS DNA viruses and have conserved domain organization with the N-terminal nuclease and the C-terminal helicase domain. Consequently, Rep is widely used as a marker for identification, classification and assessment of the diversity of CRESS DNA viruses. However, it has been shown that in certain viruses the Rep nuclease and helicase domains display incongruent evolutionary histories. Here, we systematically evaluated the co-evolutionary patterns of the two Rep domains across classified and unclassified CRESS DNA viruses. Our analysis indicates that the Reps encoded by members of the families Bacilladnaviridae, Circoviridae, Geminiviridae, Genomoviridae, Nanoviridae and Smacoviridae display largely congruent evolutionary patterns in the two domains. By contrast, among the unclassified CRESS DNA viruses, 71% appear to have chimeric Reps. Such massive chimerism suggests that unclassified CRESS DNA viruses represent a dynamic population in which exchange of gene fragments encoding the nuclease and helicase domains is extremely common. Furthermore, purging of the chimeric sequences uncovered six monophyletic Rep groups that may represent new families of CRESS DNA viruses.


Assuntos
Quimerismo , Vírus de DNA/classificação , Vírus de DNA/genética , DNA de Cadeia Simples/genética , Filogenia , Evolução Molecular , Genoma Viral/genética , Metagenômica , Domínios Proteicos/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA