Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ceram Int ; 46(16): 25671-25677, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32836654

RESUMO

In this paper, we used Geant4 Monte Carlo simulations to investigate the effect of TiO2/V2O5 substitution on the radiation shielding properties of alkali borate glasses in the chemical form of 30Li2O+55B2O3+5ZnO + xTiO2+(10 - x)V2O5, where x = 0, 2.5, 5, 7.5, and 10 mol%. Also, the optical properties were examined by evaluating several factors such as molar refraction (Rm), metallization criterion (M), molar polarizability (αm), dielectric coefficients (static and optical), optical transmission (T), and reflection loss (RL). The radiation shielding properties of the tested glasses were estimated by determining the mass attenuation coefficient, and other related factors such as the tenth value layer (TVL), the mean free path (MFP), the electron total stopping powers (Ψe) and the electron continuous slowing down approximation range (CSDA) (Φe) for different energy values. The results of Geant4 Monte Carlo were compared with the theoretical values calculated by XCOM platform. The results revealed that the TiO2/V2O5 substitution had a remarkable influence on the gamma shielding properties for the tested glasses. On the other hand, the optical properties slightly changed by the TiO2/V2O5 substitution. The gamma shielding properties of the tested glasses were compared with many samples in terms of MFP. The present glasses showed superior features to apply for optical and radiation shielding applications.

2.
Sci Rep ; 14(1): 7738, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565893

RESUMO

Electrowetting behaviour for carbon nanotubes (CNT) grown on stainless steel mesh was investigated. The effect of temperature, time, and applied bias voltage on the contact angle of water droplets was studied. The impact of temperature variation on contact angle was also performed for the temperature ranging from 25 to 70 °C. A decrement of contact angle by 68% was observed for the mentioned range indicating a transition from a hydrophobic to hydrophilic nature. A similar trend was observed on the application of electric potential to the CNT-modified stainless-steel mesh ranging from 0 to 8 V with a transition of contact angle from 146 to 30 deg respectively. A comparative analysis for the contact angle variation with time for CNT-coated mesh and uncoated mesh was performed for 180 min. It is observed that uncoated mesh shows a reduction in contact angle to 0 deg with time while the CNT coated mesh shows surplus hydrophobicity with a 2 deg decrement in the extent of time. CNT-modified mesh successfully absorbs 95% of rhodamine B (RB) dye and detergent from water in 10 cycles.

3.
Sci Rep ; 14(1): 14243, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902299

RESUMO

A complex fuzzy distance measure (CFDMs) plays a significant role in applications involving complex or high-dimensional data where traditional distance measures may not adequately capture the nuances of the data relationships. The significance of CFDMs lies in their ability to handle uncertainty, imprecision, and complexity in various domains. Numerous researchers introduced different concepts of CFDMs, yet these CFDMs fails to convey any information regarding the hesitancy degree associated with an element. The main objective of this paper is to introduce some new distance measures based on complex fuzzy sets, called complex fuzzy hesitance distance measure and complex fuzzy Euclidean Hesitance distance measure, which is the generalization of complex fuzzy normalized Hamming distance measure and complex fuzzy Euclidean distance measure. Some new operations and primay results are discussed in the environment of proposed CFDMs and complex fuzzy operations. Moreover, we discussed the applications of the proposed CFDMs in addressing decision-making problems. We introduced a new decision-making algorithm that integrates CFDMs into decision-making processes, providing a robust methodology for handling real-world complexities. Further, the comparative study of the proposed CFDMs is discussed with some existing CFDMs.

4.
Appl Radiat Isot ; 204: 111139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104471

RESUMO

We report on newly developed nuclear shielding glass system based on lead-tungsten-boron (PWB) for radiation applications against photon, neutron and charge particles. This newly developed system contains also different additions, in low concentrations, such as Sb, Al and Bi. The gamma/photon shielding performance was tested by using FLUKA Monte Carlo. Moreover, the shielding efficiency of the present system is examined against charged particles (light and heavy ones) and neutrons. The highest gamma/photons attenuation is observed in the lowest incident energy and this is at the region of the photoelectric absorption. We also observe that the values of effective atomic number (Zeff) show a peak at 100 keV incident energy. The reduction of these values is higher for photon energy range 0.1-1 MeV than below 80 keV energies. The lowest half value layer (d1/2), reflecting the best shielding efficiency, is recorded for the PWB-Bi system. The PWB-Bi system demonstrates promising performance better than many of commercial and standard systems and heavy concretes.

5.
Sci Rep ; 14(1): 9412, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658625

RESUMO

Textile industry dye effluent contains a mixture of different kinds of dyes. Many times, photocatalysis is targeted as a solution for the treatment of dye effluent from the textile industry. Many researches have been published related to the photocatalysis of single textile dyes but in the real-world scenario, effluent is a mixture of dyes. Magnesium oxide (MgO) is used as a photocatalyst to treat a mixture (binary solution) of Methylene blue (MB) and Methylene violet (MV) along with individual MB and MV dyes in this article. MgO shows remarkable photocatalytic activity at about 93 and 88% for MB and MV dye in binary solution within 135 min. Furthermore, to study the influence of process parameters, experiments are designed with the help of the central composite design (CCD), and Response surface methodology (RSM) is used to study the interactions between parameters. For this study, five parameters are selected i.e., Photocatalyst dosage, initial concentration of both dyes, time of exposure to the light source, and pH of the binary solution. The photocatalytic process is also optimized and finally optimization of process parameters is validated with an experiment. The result of the validation experiment is very close to the predicted photocatalytic activity.

6.
Glob Chall ; 7(2): 2200142, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36778781

RESUMO

This study focuses on analyzing the poling effect of BaBi4Ti4O15 (BBT) on the basis of photo and piezo-catalysis performance. BBT powder is prepared via a solid state reaction followed by calcination at 950 °C for 4 h. BBT is characterized by an X-ray diffractometer, scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The optical bandgap of BBT is evaluated with the help of Tauc's plot and found to be 3.29 eV, which comes in the photon energy range of ultra-violet radiation. BBT powder is poled by using Corona poling in the presence of 2 kV mm-1 of electric field. An aqueous solution of methyl blue (MB) dye in the presence of UV radiation is used to evaluate the photo/piezocatalysis performance. Photocatalysis, piezocatalysis, and photo-piezo catalysis degradation efficiencies of poled and unpoled BBT powder are tested for 120 min of UV light irradiation. Photo-piezocatalysis shows degradation efficiencies of 62% and 40% for poled and unpoled BBT powder, respectively. Poling of BBT powder shows significant enhancement in degradation performance of MB dye in aqueous solution. Scavenger tests are also performed to identify reactive species.

7.
Sci Rep ; 13(1): 8188, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210398

RESUMO

The mechanochemical ball milling followed by heating at 650 °C for 5 h successfully produced the single-phase Bi2VO5.5 powder. Catalytic activity for methylene blue dye degradation was investigated. Raman spectroscopy and X-ray diffraction were used to confirm the phase formation. The sample's charge carrier transportation behavior was ascertained using time-dependent photocurrent analysis. The piezo-photocatalysis experiment yielded a 63% degradation efficiency for the ball-milled Bi2VO5.5 sample. The pseudo-first-order kinetics of the piezo-photocatalytic dye degradation are discerned, and the significant k value of 0.00529 min-1 is achieved. The scavenger test declares the h+ radical is the predominant active species during the piezo-photocatalysis experiment. Vigna radiata seeds were used in a phytotoxicity test to evaluate the germination index. The mechanochemical activation method facilitates reactions by lowering reaction temperature and time. The effect of improved piezo-photocatalytic efficiency on the ball-milled Bi2VO5.5 powder is an unexplored area, and we have attempted to investigate it. Here, ball-milled Bi2VO5.5 powder achieved improved dye degradation performance.

8.
Sci Rep ; 13(1): 5923, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041180

RESUMO

A thermoregulating smart textile based on phase change material (PCM) polyethylene glycol (PEG) was prepared by chemically grafting carboxyl-terminated PEG onto cotton. Further deposits of graphene oxide (GO) nanosheets were made on the PEG grafted cotton (PEG-g-Cotton) to improve the thermal conductivity of the fabric and to block harmful UV radiation. The GO-PEG-g-Cotton was characterized by Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, X-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and field emission-scanning electron microscopy (FE-SEM). With an enthalpy of 37 and 36 J/g, respectively, the DSC data revealed that the functionalized cotton's melting and crystallization maxima occurred at 58 °C and 40 °C, respectively. The thermogravimetric analysis (TGA) presented that GO-PEG-g-Cotton was thermally more stable in comparison to pure cotton. The thermal conductivity of PEG-g-Cotton increased to 0.52 W/m K after GO deposition, while pure cotton conductivity was measured as 0.045 W/m K. The improvement in the UV protection factor (UPF) of GO-PEG-g-Cotton was observed indicating excellent UV blocking. This temperature-regulating smart cotton offers a high thermal energy storage capability, better thermal conductivity, thermal stability, and excellent UV protection.

9.
Sci Rep ; 13(1): 19744, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957159

RESUMO

The fabrication of a Poly (vinylidene fluoride) membrane (PVDF) and ceramic-assisted bismuth vanadate-polyvinylidene fluoride (BiVO4-PVDF) composite membrane was achieved through the utilization of the electrospinning technique. The composition and structure of the fabricated membranes were characterized by X-ray powder diffraction, Raman analysis, scanning electron microscopy, Thermo gravimetric analyzer, Fourier transform infrared spectroscopy, and UV-Vis spectroscopy techniques. The prepared polymeric membranes were then utilized for catalytic investigation and to explore, how structure affects catalytic activity using 5 mg/L, 10 mL methylene blue (MB) dye solution. Ultrasonication, visible light irradiation, and the combination were used to study piezocatalysis, photocatalysis, and piezo-photocatalysis, moreover, degradation intermediates were also explored using scavengers. Electrospun BiVO4-PVDF (BV-PVDF) composite has been found to have better piezocatalytic and photocatalytic properties than PVDF. The experimental findings reveal that the composite of BiVO4-PVDF demonstrates the highest efficiency in dye degradation, achieving a maximum degradation rate of 61% within a processing time of 180 min. The rate of degradation was calculated to be 0.0047 min-1, indicating a promising potential for the composite in the field of dye degradation.

10.
RSC Adv ; 12(11): 6592-6600, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35424596

RESUMO

Boron nitride (BN) nanomaterials are rapidly being investigated for potential applications in biomedical sciences due to their exceptional physico-chemical characteristics. However, their safe use demands a thorough understanding of their possible environmental and toxicological effects. The cytotoxicity of boron nitride nanotubes (BNNTs) was explored to see if they could be used in living cell imaging. It was observed that the cytotoxicity of BNNTs is higher in cancer cells (65 and 80%) than in normal cell lines (40 and 60%) for 24 h and 48 h respectively. The influence of multiple experimental parameters such as pH, time, amount of catalyst, and initial dye concentration on percentage degradation efficiency was also examined for both catalyst and dye. The degradation effectiveness decreases (92 to 25%) as the original concentration of dye increases (5-50 ppm) due to a decrease in the availability of adsorption sites. Similarly, the degradation efficiency improves up to 90% as the concentration of catalyst increases (0.01-0.05 g) due to an increase in the adsorption sites. The influence of pH was also investigated, the highest degradation efficiency for MO dye was observed at pH 4. Our results show that lower concentrations of BNNTs can be employed in biomedical applications. Dye degradation properties of BNNTs suggest that it can be a potential candidate as a wastewater and air treatment material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA