RESUMO
We discuss the invasion of the Omicron BA.1 variant into England as a paradigm for real-time model fitting and projection. Here we use a mixture of simple SIR-type models, analysis of the early data and a more complex age-structure model fit to the outbreak to understand the dynamics. In particular, we highlight that early data shows that the invading Omicron variant had a substantial growth advantage over the resident Delta variant. However, early data does not allow us to reliably infer other key epidemiological parameters-such as generation time and severity-which influence the expected peak hospital numbers. With more complete epidemic data from January 2022 are we able to capture the true scale of the epidemic in terms of both infections and hospital admissions, driven by different infection characteristics of Omicron compared to Delta and a substantial shift in estimated precautionary behaviour during December. This work highlights the challenges of real time forecasting, in a rapidly changing environment with limited information on the variant's epidemiological characteristics.
Assuntos
COVID-19 , Previsões , SARS-CoV-2 , Humanos , Inglaterra/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , Previsões/métodos , Estudos Retrospectivos , Adulto , Biologia Computacional/métodos , Pessoa de Meia-Idade , Modelos Epidemiológicos , Idoso , Surtos de Doenças/estatística & dados numéricos , AdolescenteRESUMO
Vector control is a vital tool utilised by malaria control and elimination programmes worldwide, and as such it is important that we can accurately quantify the expected public health impact of these methods. There are very few previous models that consider vector-control-induced changes in the age-structure of the vector population and the resulting impact on transmission. We analytically derive the steady-state solution of a novel age-structured deterministic compartmental model describing the mosquito feeding cycle, with mosquito age represented discretely by parity-the number of cycles (or successful bloodmeals) completed. Our key model output comprises an explicit, analytically tractable solution that can be used to directly quantify key transmission statistics, such as the effective reproductive ratio under control, Rc, and investigate the age-structured impact of vector control. Application of this model reinforces current knowledge that adult-acting interventions, such as indoor residual spraying of insecticides (IRS) or long-lasting insecticidal nets (LLINs), can be highly effective at reducing transmission, due to the dual effects of repelling and killing mosquitoes. We also demonstrate how larval measures can be implemented in addition to adult-acting measures to reduce Rc and mitigate the impact of waning insecticidal efficacy, as well as how mid-ranges of LLIN coverage are likely to experience the largest effect of reduced net integrity on transmission. We conclude that whilst well-maintained adult-acting vector control measures are substantially more effective than larval-based interventions, incorporating larval control in existing LLIN or IRS programmes could substantially reduce transmission and help mitigate any waning effects of adult-acting measures.
Assuntos
Anopheles , Inseticidas , Malária , Adulto , Animais , Humanos , Controle de Mosquitos/métodos , Mosquitos Vetores , Inseticidas/farmacologia , Malária/epidemiologiaRESUMO
[This corrects the article DOI: 10.1371/journal.pcbi.1007096.].
RESUMO
BACKGROUND: Respiratory pathogens inflict a substantial burden on public health and the economy. Although the severity of symptoms caused by these pathogens can vary from asymptomatic to fatal, the factors that determine symptom severity are not fully understood. Correlations in symptoms between infector-infectee pairs, for which evidence is accumulating, can generate large-scale clusters of severe infections that could be devastating to those most at risk, whilst also conceivably leading to chains of mild or asymptomatic infections that generate widespread immunity with minimal cost to public health. Although this effect could be harnessed to amplify the impact of interventions that reduce symptom severity, the mechanistic representation of symptom propagation within mathematical and health economic modelling of respiratory diseases is understudied. METHODS AND FINDINGS: We propose a novel framework for incorporating different levels of symptom propagation into models of infectious disease transmission via a single parameter, α. Varying α tunes the model from having no symptom propagation (α = 0, as typically assumed) to one where symptoms always propagate (α = 1). For parameters corresponding to three respiratory pathogens-seasonal influenza, pandemic influenza and SARS-CoV-2-we explored how symptom propagation impacted the relative epidemiological and health-economic performance of three interventions, conceptualised as vaccines with different actions: symptom-attenuating (labelled SA), infection-blocking (IB) and infection-blocking admitting only mild breakthrough infections (IB_MB). In the absence of interventions, with fixed underlying epidemiological parameters, stronger symptom propagation increased the proportion of cases that were severe. For SA and IB_MB, interventions were more effective at reducing prevalence (all infections and severe cases) for higher strengths of symptom propagation. For IB, symptom propagation had no impact on effectiveness, and for seasonal influenza this intervention type was more effective than SA at reducing severe infections for all strengths of symptom propagation. For pandemic influenza and SARS-CoV-2, at low intervention uptake, SA was more effective than IB for all levels of symptom propagation; for high uptake, SA only became more effective under strong symptom propagation. Health economic assessments found that, for SA-type interventions, the amount one could spend on control whilst maintaining a cost-effective intervention (termed threshold unit intervention cost) was very sensitive to the strength of symptom propagation. CONCLUSIONS: Overall, the preferred intervention type depended on the combination of the strength of symptom propagation and uptake. Given the importance of determining robust public health responses, we highlight the need to gather further data on symptom propagation, with our modelling framework acting as a template for future analysis.
Assuntos
COVID-19 , Influenza Humana , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/economia , Influenza Humana/epidemiologia , Influenza Humana/economia , Pandemias , Modelos Teóricos , Biologia Computacional , Modelos Econômicos , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Infecções Respiratórias/economia , Saúde Pública/economiaRESUMO
The rapid development of vaccines against SARS-CoV-2 altered the course of the COVID-19 pandemic. In most countries, vaccinations were initially targeted at high-risk populations, including older individuals and healthcare workers. Now, despite substantial infection- and vaccine-induced immunity in host populations worldwide, waning immunity and the emergence of novel variants continue to cause significant waves of infection and disease. Policy makers must determine how to deploy booster vaccinations, particularly when constraints in vaccine supply, delivery and cost mean that booster vaccines cannot be administered to everyone. A key question is therefore whether older individuals should again be prioritised for vaccination, or whether alternative strategies (e.g. offering booster vaccines to the individuals who have most contacts with others and therefore drive infection) can instead offer indirect protection to older individuals. Here, we use mathematical modelling to address this question, considering SARS-CoV-2 transmission in a range of countries with different socio-economic backgrounds. We show that the population structures of different countries can have a pronounced effect on the impact of booster vaccination, even when identical booster vaccination targeting strategies are adopted. However, under the assumed transmission model, prioritising older individuals for booster vaccination consistently leads to the most favourable public health outcomes in every setting considered. This remains true for a range of assumptions about booster vaccine supply and timing, and for different assumed policy objectives of booster vaccination.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Saúde Pública , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , COVID-19/epidemiologia , Imunização Secundária/estatística & dados numéricos , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Idoso , SARS-CoV-2/imunologia , Fatores Socioeconômicos , Pessoa de Meia-Idade , Vacinação/estatística & dados numéricos , Pandemias/prevenção & controleRESUMO
Until the early twentieth century, populations on many Pacific Islands had never experienced measles. As travel to the Pacific Islands by Europeans became more common, the arrival of measles and other pathogens had devastating consequences. In 1911, Rotuma in Fiji was hit by a measles epidemic, which killed 13% of the island population. Detailed records show two mortality peaks, with individuals reported as dying solely from measles in the first and from measles and diarrhoea in the second. Measles is known to disrupt immune system function. Here, we investigate whether the pattern of mortality on Rotuma in 1911 was a consequence of the immunosuppressive effects of measles. We use a compartmental model to simulate measles infection and immunosuppression. Whilst immunosuppressed, we assume that individuals are vulnerable to dysfunctional reactions triggered by either (i) a newly introduced infectious agent arriving at the same time as measles or (ii) microbes already present in the population in a pre-existing equilibrium state. We show that both forms of the immunosuppression model provide a plausible fit to the data and that the inclusion of immunosuppression in the model leads to more realistic estimates of measles epidemiological parameters than when immunosuppression is not included.
Assuntos
Surtos de Doenças , Sarampo , Sarampo/mortalidade , Sarampo/epidemiologia , Sarampo/história , Humanos , Surtos de Doenças/história , Criança , Lactente , Pré-Escolar , Adolescente , Fiji/epidemiologia , História do Século XX , Masculino , Adulto , Adulto Jovem , Feminino , Pessoa de Meia-Idade , Terapia de ImunossupressãoRESUMO
One of the key features of any infectious disease is whether infection generates long-lasting immunity or whether repeated reinfection is common. In the former, the long-term dynamics are driven by the birth of susceptible individuals while in the latter the dynamics are governed by the speed of waning immunity. Between these two extremes a range of scenarios is possible. During the early waves of SARS-CoV-2, the underlying paradigm was for long-lasting immunity, but more recent data and in particular the 2022 Omicron waves have shown that reinfection can be relatively common. Here we investigate reported SARS-CoV-2 cases in England, partitioning the data into four main waves, and consider the temporal distribution of first and second reports of infection. We show that a simple low-dimensional statistical model of random (but scaled) reinfection captures much of the observed dynamics, with the value of this scaling, k, providing information of underlying epidemiological patterns. We conclude that there is considerable heterogeneity in risk of reporting reinfection by wave, age-group and location. The high levels of reinfection in the Omicron wave (we estimate that 18% of all Omicron cases had been previously infected, although not necessarily previously reported infection) point to reinfection events dominating future COVID-19 dynamics. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".
Assuntos
COVID-19 , Reinfecção , Humanos , Reinfecção/epidemiologia , SARS-CoV-2 , COVID-19/epidemiologia , Pandemias , Inglaterra/epidemiologiaRESUMO
Rapid testing strategies that replace the isolation of close contacts through the use of lateral flow device tests (LFTs) have been suggested as a way of controlling SARS-CoV-2 transmission within schools that maintain low levels of pupil absences. We developed an individual-based model of a secondary school formed of exclusive year group bubbles (five year groups, with 200 pupils per year) to assess the likely impact of strategies using LFTs in secondary schools over the course of a seven-week half-term on transmission, absences, and testing volume, compared to a policy of isolating year group bubbles upon a pupil returning a positive polymerase chain reaction (PCR) test. We also considered the sensitivity of results to levels of participation in rapid testing and underlying model assumptions. While repeated testing of year group bubbles following case detection is less effective at reducing infections than a policy of isolating year group bubbles, strategies involving twice weekly mass testing can reduce infections to lower levels than would occur under year group isolation. By combining regular testing with serial contact testing or isolation, infection levels can be reduced further still. At high levels of pupil participation in lateral flow testing, strategies replacing the isolation of year group bubbles with testing substantially reduce absences, but require a high volume of testing. Our results highlight the conflict between the goals of minimising within-school transmission, minimising absences and minimising testing burden. While rapid testing strategies can reduce school transmission and absences, they may lead to a large number of daily tests.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Teste para COVID-19 , Humanos , Instituições AcadêmicasRESUMO
The rapid detection of outbreaks is a key step in the effective control and containment of infectious diseases. In particular, the identification of cases which might be epidemiologically linked is crucial in directing outbreak-containment efforts and shaping the intervention of public health authorities. Often this requires the detection of clusters of cases whose numbers exceed those expected by a background of sporadic cases. Quantifying exceedances rapidly is particularly challenging when only few cases are typically reported in a precise location and time. To address such important public health concerns, we present a general method which can detect spatio-temporal deviations from a Poisson point process and estimate the odds of an isolate being part of a cluster. This method can be applied to diseases where detailed geographical information is available. In addition, we propose an approach to explicitly take account of delays in microbial typing. As a case study, we considered invasive group A Streptococcus infection events as recorded and typed by Public Health England from 2015 to 2020.
Assuntos
Infecções Estreptocócicas , Humanos , Análise por Conglomerados , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/prevenção & controle , Surtos de Doenças/prevenção & controle , Inglaterra/epidemiologiaRESUMO
The spread of infection amongst livestock depends not only on the traits of the pathogen and the livestock themselves, but also on the veterinary health behaviours of farmers and how this impacts their implementation of disease control measures. Controls that are costly may make it beneficial for individuals to rely on the protection offered by others, though that may be sub-optimal for the population. Failing to account for socio-behavioural properties may produce a substantial layer of bias in infectious disease models. We investigated the role of heterogeneity in vaccine response across a population of farmers on epidemic outbreaks amongst livestock, caused by pathogens with differential speed of spread over spatial landscapes of farms for two counties in England (Cumbria and Devon). Under different compositions of three vaccine behaviour groups (precautionary, reactionary, non-vaccination), we evaluated from population- and individual-level perspectives the optimum threshold distance to premises with notified infection that would trigger responsive vaccination by the reactionary vaccination group. We demonstrate a divergence between population and individual perspectives in the optimal scale of reactive voluntary vaccination response. In general, minimising the population-level perspective cost requires a broader reactive uptake of the intervention, whilst optimising the outcome for the average individual increased the likelihood of larger scale disease outbreaks. When the relative cost of vaccination was low and the majority of premises had undergone precautionary vaccination, then adopting a perspective that optimised the outcome for an individual gave a broader spatial extent of reactive response compared to a perspective wanting to optimise outcomes for everyone in the population. Under our assumed epidemiological context, the findings identify livestock disease intervention receptiveness and cost combinations where one would expect strong disagreement between the intervention stringency that is best from the perspective of a stakeholder responsible for supporting the livestock industry compared to a sole livestock owner. Were such discord anticipated and achieving a consensus view across perspectives desired, the findings may also inform those managing veterinary health policy the requisite reduction in intervention cost and/or the required extent of nurturing beneficial community attitudes towards interventions.
Assuntos
Doenças Transmissíveis , Gado , Animais , Controle de Doenças Transmissíveis , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Humanos , PolíticasRESUMO
The widespread, and in many countries unprecedented, use of non-pharmaceutical interventions (NPIs) during the COVID-19 pandemic has highlighted the need for mathematical models which can estimate the impact of these measures while accounting for the highly heterogeneous risk profile of COVID-19. Models accounting either for age structure or the household structure necessary to explicitly model many NPIs are commonly used in infectious disease modelling, but models incorporating both levels of structure present substantial computational and mathematical challenges due to their high dimensionality. Here we present a modelling framework for the spread of an epidemic that includes explicit representation of age structure and household structure. Our model is formulated in terms of tractable systems of ordinary differential equations for which we provide an open-source Python implementation. Such tractability leads to significant benefits for model calibration, exhaustive evaluation of possible parameter values, and interpretability of results. We demonstrate the flexibility of our model through four policy case studies, where we quantify the likely benefits of the following measures which were either considered or implemented in the UK during the current COVID-19 pandemic: control of within- and between-household mixing through NPIs; formation of support bubbles during lockdown periods; out-of-household isolation (OOHI); and temporary relaxation of NPIs during holiday periods. Our ordinary differential equation formulation and associated analysis demonstrate that multiple dimensions of risk stratification and social structure can be incorporated into infectious disease models without sacrificing mathematical tractability. This model and its software implementation expand the range of tools available to infectious disease policy analysts.
Assuntos
COVID-19 , Doenças Transmissíveis , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/métodos , Humanos , Pandemias/prevenção & controle , Políticas , SARS-CoV-2RESUMO
BACKGROUND: Children and young persons are known to have a high number of close interactions, often within the school environment, which can facilitate rapid spread of infection; yet for SARS-CoV-2, it is the elderly and vulnerable that suffer the greatest health burden. Vaccination, initially targeting the elderly and vulnerable before later expanding to the entire adult population, has been transformative in the control of SARS-CoV-2 in England. However, early concerns over adverse events and the lower risk associated with infection in younger individuals means that the expansion of the vaccine programme to those under 18 years of age needs to be rigorously and quantitatively assessed. METHODS: Here, using a bespoke mathematical model matched to case and hospital data for England, we consider the potential impact of vaccinating 12-17 and 5-11-year-olds. This analysis is reported from an early model (generated in June 2021) that formed part of the evidence base for the decisions in England, and a later model (from November 2021) that benefits from a richer understanding of vaccine efficacy, greater knowledge of the Delta variant wave and uses data on the rate of vaccine administration. For both models, we consider the population wide impact of childhood vaccination as well as the specific impact on the age groups targeted for vaccination. RESULTS: Projections from June suggested that an expansion of the vaccine programme to those 12-17 years old could generate substantial reductions in infection, hospital admission and deaths in the entire population, depending on population behaviour following the relaxation of control measures. The benefits within the 12-17-year-old cohort were less marked, saving between 660 and 1100 (95% PI (prediction interval) 280-2300) hospital admissions and between 22 and 38 (95% PI 9-91) deaths depending on assumed population behaviour. For the more recent model, the benefits within this age group are reduced, saving on average 630 (95% PI 300-1300) hospital admissions and 11 (95% PI 5-28) deaths for 80% vaccine uptake, while the benefits to the wider population represent a reduction of 8-10% in hospital admissions and deaths. The vaccination of 5-11-year-olds is projected to have a far smaller impact, in part due to the later roll-out of vaccines to this age group. CONCLUSIONS: Vaccination of 12-170-year-olds and 5-11-year-olds is projected to generate a reduction in infection, hospital admission and deaths for both the age groups involved and the population in general. For any decision involving childhood vaccination, these benefits needs to be balanced against potential adverse events from the vaccine, the operational constraints on delivery and the potential for diverting resources from other public health campaigns.
Assuntos
COVID-19 , Infecção Hospitalar , Vacinas , Adolescente , Adulto , Idoso , COVID-19/prevenção & controle , Criança , Inglaterra/epidemiologia , Humanos , SARS-CoV-2 , VacinaçãoRESUMO
Gambiense human African trypanosomiasis (gHAT, sleeping sickness) is one of several neglected tropical diseases (NTDs) where there is evidence of asymptomatic human infection but there is uncertainty of the role it plays in transmission and maintenance. To explore possible consequences of asymptomatic infections, particularly in the context of elimination of transmission-a goal set to be achieved by 2030-we propose a novel dynamic transmission model to account for the asymptomatic population. This extends an established framework, basing infection progression on a number of experimental and observation gHAT studies. Asymptomatic gHAT infections include those in people with blood-dwelling trypanosomes, but no discernible symptoms, or those with parasites only detectable in skin. Given current protocols, asymptomatic infection with blood parasites may be diagnosed and treated, based on observable parasitaemia, in contrast to many other diseases for which treatment (and/or diagnosis) may be based on symptomatic infection. We construct a model in which exposed people can either progress to either asymptomatic skin-only parasite infection, which would not be diagnosed through active screening algorithms, or blood-parasite infection, which is likely to be diagnosed if tested. We add extra parameters to the baseline model including different self-cure, recovery, transmission and detection rates for skin-only or blood infections. Performing sensitivity analysis suggests all the new parameters introduced in the asymptomatic model can impact the infection dynamics substantially. Among them, the proportion of exposures resulting in initial skin or blood infection appears the most influential parameter. For some plausible parameterisations, an initial fall in infection prevalence due to interventions could subsequently stagnate even under continued screening due to the formation of a new, lower endemic equilibrium. Excluding this scenario, our results still highlight the possibility for asymptomatic infection to slow down progress towards elimination of transmission. Location-specific model fitting will be needed to determine if and where this could pose a threat.
Assuntos
Infecções Assintomáticas/epidemiologia , Modelos Biológicos , Trypanosoma brucei gambiense , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/transmissão , Animais , Número Básico de Reprodução/estatística & dados numéricos , Biologia Computacional , Simulação por Computador , Doenças Endêmicas/prevenção & controle , Doenças Endêmicas/estatística & dados numéricos , Humanos , Prevalência , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé/parasitologiaRESUMO
Identification of those at greatest risk of death due to the substantial threat of COVID-19 can benefit from novel approaches to epidemiology that leverage large datasets and complex machine-learning models, provide data-driven intelligence, and guide decisions such as intensive-care unit admission (ICUA). The objective of this study is two-fold, one substantive and one methodological: substantively to evaluate the association of demographic and health records with two related, yet different, outcomes of severe COVID-19 (viz., death and ICUA); methodologically to compare interpretations based on logistic regression and on gradient-boosted decision tree (GBDT) predictions interpreted by means of the Shapley impacts of covariates. Very different association of some factors, e.g., obesity and chronic respiratory diseases, with death and ICUA may guide review of practice. Shapley explanation of GBDTs identified varying effects of some factors among patients, thus emphasising the importance of individual patient assessment. The results of this study are also relevant for the evaluation of complex automated clinical decision systems, which should optimise prediction scores whilst remaining interpretable to clinicians and mitigating potential biases.
Assuntos
COVID-19/mortalidade , COVID-19/terapia , Unidades de Terapia Intensiva/estatística & dados numéricos , Aprendizado de Máquina , Admissão do Paciente/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/complicações , COVID-19/virologia , Criança , Pré-Escolar , Comorbidade , Inglaterra/epidemiologia , Feminino , Humanos , Lactente , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Adulto JovemRESUMO
The COVID-19 outbreak has highlighted our vulnerability to novel infections. Faced with this threat and no effective treatment, in line with many other countries, the UK adopted enforced social distancing (lockdown) to reduce transmission-successfully reducing the reproductive number R below one. However, given the large pool of susceptible individuals that remain, complete relaxation of controls is likely to generate a substantial further outbreak. Vaccination remains the only foreseeable means of both containing the infection and returning to normal interactions and behaviour. Here, we consider the optimal targeting of vaccination within the UK, with the aim of minimising future deaths or quality adjusted life year (QALY) losses. We show that, for a range of assumptions on the action and efficacy of the vaccine, targeting older age groups first is optimal and may be sufficient to stem the epidemic if the vaccine prevents transmission as well as disease.
Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/imunologia , Simulação por Computador , Vacinação , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Controle de Doenças Transmissíveis , Humanos , Imunidade Coletiva , Reino Unido/epidemiologiaRESUMO
As part of a concerted pandemic response to protect public health, businesses can enact non-pharmaceutical controls to minimise exposure to pathogens in workplaces and premises open to the public. Amendments to working practices can lead to the amount, duration and/or proximity of interactions being changed, ultimately altering the dynamics of disease spread. These modifications could be specific to the type of business being operated. We use a data-driven approach to parameterise an individual-based network model for transmission of SARS-CoV-2 amongst the working population, stratified into work sectors. The network is comprised of layered contacts to consider the risk of spread in multiple encounter settings (workplaces, households, social and other). We analyse several interventions targeted towards working practices: mandating a fraction of the population to work from home; using temporally asynchronous work patterns; and introducing measures to create 'COVID-secure' workplaces. We also assess the general role of adherence to (or effectiveness of) isolation and test and trace measures and demonstrate the impact of all these interventions across a variety of relevant metrics. The progress of the epidemic can be significantly hindered by instructing a significant proportion of the workforce to work from home. Furthermore, if required to be present at the workplace, asynchronous work patterns can help to reduce infections when compared with scenarios where all workers work on the same days, particularly for longer working weeks. When assessing COVID-secure workplace measures, we found that smaller work teams and a greater reduction in transmission risk reduced the probability of large, prolonged outbreaks. Finally, following isolation guidance and engaging with contact tracing without other measures is an effective tool to curb transmission, but is highly sensitive to adherence levels. In the absence of sufficient adherence to non-pharmaceutical interventions, our results indicate a high likelihood of SARS-CoV-2 spreading widely throughout a worker population. Given the heterogeneity of demographic attributes across worker roles, in addition to the individual nature of controls such as contact tracing, we demonstrate the utility of a network model approach to investigate workplace-targeted intervention strategies and the role of test, trace and isolation in tackling disease spread.
Assuntos
COVID-19/prevenção & controle , Busca de Comunicante , Modelos Biológicos , Local de Trabalho , COVID-19/epidemiologia , COVID-19/transmissão , Fidelidade a Diretrizes/estatística & dados numéricos , Humanos , Pandemias , Saúde Pública , SARS-CoV-2 , Trabalho/estatística & dados numéricosRESUMO
We explore the spatial and temporal spread of the novel SARS-CoV-2 virus under containment measures in three European countries based on fits to data of the early outbreak. Using data from Spain and Italy, we estimate an age dependent infection fatality ratio for SARS-CoV-2, as well as risks of hospitalization and intensive care admission. We use them in a model that simulates the dynamics of the virus using an age structured, spatially detailed agent based approach, that explicitly incorporates governmental interventions and changes in mobility and contact patterns occurred during the COVID-19 outbreak in each country. Our simulations reproduce several of the features of its spatio-temporal spread in the three countries studied. They show that containment measures combined with high density are responsible for the containment of cases within densely populated areas, and that spread to less densely populated areas occurred during the late stages of the first wave. The capability to reproduce observed features of the spatio-temporal dynamics of SARS-CoV-2 makes this model a potential candidate for forecasting the dynamics of SARS-CoV-2 in other settings, and we recommend its application in low and lower-middle income countries which remain understudied.
Assuntos
COVID-19/epidemiologia , Simulação por Computador , COVID-19/mortalidade , COVID-19/transmissão , COVID-19/virologia , Busca de Comunicante , Surtos de Doenças , Hospitalização/estatística & dados numéricos , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Itália/epidemiologia , Admissão do Paciente/estatística & dados numéricos , Distanciamento Físico , Risco , SARS-CoV-2/isolamento & purificação , Espanha/epidemiologia , Reino Unido/epidemiologiaRESUMO
Gambiense human African trypanosomiasis (gHAT) is a virulent disease declining in burden but still endemic in West and Central Africa. Although it is targeted for elimination of transmission by 2030, there remain numerous questions about the drivers of infection and how these vary geographically. In this study we focus on the Democratic Republic of Congo (DRC), which accounted for 84% of the global case burden in 2016, to explore changes in transmission across the country and elucidate factors which may have contributed to the persistence of disease or success of interventions in different regions. We present a Bayesian fitting methodology, applied to 168 endemic health zones (â¼100,000 population size), which allows for calibration of a mechanistic gHAT model to case data (from the World Health Organization HAT Atlas) in an adaptive and automated framework. It was found that the model needed to capture improvements in passive detection to match observed trends in the data within former Bandundu and Bas Congo provinces indicating these regions have substantially reduced time to detection. Health zones in these provinces generally had longer burn-in periods during fitting due to additional model parameters. Posterior probability distributions were found for a range of fitted parameters in each health zone; these included the basic reproduction number estimates for pre-1998 (R0) which was inferred to be between 1 and 1.14, in line with previous gHAT estimates, with higher median values typically in health zones with more case reporting in the 2000s. Previously, it was not clear whether a fall in active case finding in the period contributed to the declining case numbers. The modelling here accounts for variable screening and suggests that underlying transmission has also reduced greatly-on average 96% in former Equateur, 93% in former Bas Congo and 89% in former Bandundu-Equateur and Bandundu having had the highest case burdens in 2000. This analysis also sets out a framework to enable future predictions for the country.
Assuntos
Modelos Estatísticos , Trypanosoma brucei gambiense , Tripanossomíase Africana , Teorema de Bayes , Biologia Computacional , República Democrática do Congo/epidemiologia , Humanos , Modelos Biológicos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/transmissãoRESUMO
Efforts to suppress transmission of SARS-CoV-2 in the UK have seen non-pharmaceutical interventions being invoked. The most severe measures to date include all restaurants, pubs and cafes being ordered to close on 20th March, followed by a "stay at home" order on the 23rd March and the closure of all non-essential retail outlets for an indefinite period. Government agencies are presently analysing how best to develop an exit strategy from these measures and to determine how the epidemic may progress once measures are lifted. Mathematical models are currently providing short and long term forecasts regarding the future course of the COVID-19 outbreak in the UK to support evidence-based policymaking. We present a deterministic, age-structured transmission model that uses real-time data on confirmed cases requiring hospital care and mortality to provide up-to-date predictions on epidemic spread in ten regions of the UK. The model captures a range of age-dependent heterogeneities, reduced transmission from asymptomatic infections and produces a good fit to the key epidemic features over time. We simulated a suite of scenarios to assess the impact of differing approaches to relaxing social distancing measures from 7th May 2020 on the estimated number of patients requiring inpatient and critical care treatment, and deaths. With regard to future epidemic outcomes, we investigated the impact of reducing compliance, ongoing shielding of elder age groups, reapplying stringent social distancing measures using region based triggers and the role of asymptomatic transmission. We find that significant relaxation of social distancing measures from 7th May onwards can lead to a rapid resurgence of COVID-19 disease and the health system being quickly overwhelmed by a sizeable, second epidemic wave. In all considered age-shielding based strategies, we projected serious demand on critical care resources during the course of the pandemic. The reintroduction and release of strict measures on a regional basis, based on ICU bed occupancy, results in a long epidemic tail, until the second half of 2021, but ensures that the health service is protected by reintroducing social distancing measures for all individuals in a region when required. Our work confirms the effectiveness of stringent non-pharmaceutical measures in March 2020 to suppress the epidemic. It also provides strong evidence to support the need for a cautious, measured approach to relaxation of lockdown measures, to protect the most vulnerable members of society and support the health service through subduing demand on hospital beds, in particular bed occupancy in intensive care units.
Assuntos
COVID-19 , Modelos Estatísticos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Criança , Previsões , Humanos , Pessoa de Meia-Idade , Pandemias , Anos de Vida Ajustados por Qualidade de Vida , SARS-CoV-2 , Reino Unido/epidemiologia , Adulto JovemRESUMO
BACKGROUND: The gambiense human African trypanosomiasis (gHAT) elimination programme in the Democratic Republic of Congo (DRC) routinely collects case data through passive surveillance and active screening, with several regions reporting no cases for several years, despite being endemic in the early 2000s. METHODS: We use mathematical models fitted to longitudinal data to estimate the probability that selected administrative regions have already achieved elimination of transmission (EOT) of gHAT. We examine the impact of active screening coverage on the certainty of model estimates for transmission and therefore the role of screening in the measurement of EOT. RESULTS: In 3 example health zones of Sud-Ubangi province, we find there is a moderate (>40%) probability that EOT has been achieved by 2018, based on 2000-2016 data. Budjala and Mbaya reported zero cases during 2017-18, and this further increases our respective estimates to 99.9% and 99.6% (model S) and to 87.3% and 92.1% (model W). Bominenge had recent case reporting, however, that if zero cases were found in 2021, it would substantially raise our certainty that EOT has been met there (99.0% for model S and 88.5% for model W); this could be higher with 50% coverage screening that year (99.1% for model S and 94.0% for model W). CONCLUSIONS: We demonstrate how routine surveillance data coupled with mechanistic modeling can estimate the likelihood that EOT has already been achieved. Such quantitative assessment will become increasingly important for measuring local achievement of EOT as 2030 approaches.