RESUMO
PURPOSE: To harmonize the use of color for MR relaxometry maps and therefore recommend the use of specific color-maps for representing T 1 $$ {\mathrm{T}}_1 $$ , T 2 $$ {\mathrm{T}}_2 $$ , and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ maps and their inverses. METHODS: Perceptually linearized color-maps were chosen to have similar color settings as those proposed by Griswold et al. in 2018. A Delphi process, polling the opinion of a panel of 81 experts, was used to generate consensus on the suitability of these maps. RESULTS: Consensus was reached on the suitability of the logarithm-processed Lipari color-map for T 1 $$ {\mathrm{T}}_1 $$ and the logarithm-processed Navia color-map for T 2 $$ {\mathrm{T}}_2 $$ and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ . There was consensus on color bars being mandatory and on the use of a specific value indicating "invalidity." There was no consensus on whether the ranges should be fixed per anatomy. CONCLUSION: The authors recommend the use of the logarithm-processed Lipari color-map for displaying quantitative T 1 $$ {\mathrm{T}}_1 $$ maps and R 1 $$ {\mathrm{R}}_1 $$ maps; likewise, the authors recommend the logarithm-processed Navia color-map for displaying T 2 $$ {\mathrm{T}}_2 $$ , T 2 * $$ {\mathrm{T}}_2^{\ast } $$ , R 2 $$ {\mathrm{R}}_2 $$ , and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ maps. This work originated with the Quantitative MR Study Group of the International Society of Magnetic Resonance in Medicine (ISMRM); it has the approval of the Publication Committee and of the Board of the ISMRM.
RESUMO
Presenting quantitative data using non-standardized color maps potentially results in unrecognized misinterpretation of data. Clinically meaningful color maps should intuitively and inclusively represent data without misleading interpretation. Uniformity of the color gradient for color maps is critically important. Maximal color and lightness contrast, readability for color vision-impaired individuals, and recognizability of the color scheme are highly desirable features. This article describes the use of color maps in five key quantitative MRI techniques: relaxometry, diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE)-MRI, MR elastography (MRE), and water-fat MRI. Current display practice of color maps is reviewed and shortcomings against desirable features are highlighted. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
RESUMO
OBJECTIVE: This work presents an automated quality control (QC) system within quantitative MRI (qMRI) workflows. By leveraging the ISMRM/NIST quantitative MRI system phantom, we establish an open-source pipeline for rapid, repeatable, and accurate validation and stability tracking of sequence quantification performance across diverse clinical settings. MATERIALS AND METHODS: A microservice-based QC system for automated vial segmentation from quantitative maps was developed and tested across various MRF acquisition and protocol designs, with reports generated and returned to the scanner in real time. RESULTS: The system demonstrated consistent and repeatable value segmentation and reporting, successfully extracted all 252 T1 and T2 vial samples tested. Values extracted from the same sequence were found to be repeatable with 0.09% ± 1.23% and - 0.26% ± 2.68% intersession error, respectively. DISCUSSION: By providing real-time quantification performance assessment, this easily deployable automated QC approach streamlines sequence validation and long-term performance monitoring, vital for the broader acceptance of qMRI as a standard component of clinical protocols.
RESUMO
In this paper, we review the value of phantoms for body MRI in the context of their uses for quantitative MRI methods research, clinical trials, and clinical imaging. Certain uses of phantoms are common throughout the body MRI community, including measuring bias, assessing reproducibility, and training. In addition to these uses, phantoms in body MRI methods research are used for novel methods development and the design of motion compensation and mitigation techniques. For clinical trials, phantoms are an essential part of quality management strategies, facilitating the conduct of ethically sound, reliable, and regulatorily compliant clinical research of both novel MRI methods and therapeutic agents. In the clinic, phantoms are used for development of protocols, mitigation of cost, quality control, and radiotherapy. We briefly review phantoms developed for quantitative body MRI, and finally, we review open questions regarding the most effective use of a phantom for body MRI.
Assuntos
Imageamento por Ressonância Magnética , Imagens de Fantasmas , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Humanos , Reprodutibilidade dos Testes , Controle de Qualidade , Processamento de Imagem Assistida por Computador/métodos , Ensaios Clínicos como Assunto , Desenho de Equipamento , Movimento (Física)RESUMO
In March 2022, the first ISMRM Workshop on Low-Field MRI was held virtually. The goals of this workshop were to discuss recent low field MRI technology including hardware and software developments, novel methodology, new contrast mechanisms, as well as the clinical translation and dissemination of these systems. The virtual Workshop was attended by 368 registrants from 24 countries, and included 34 invited talks, 100 abstract presentations, 2 panel discussions, and 2 live scanner demonstrations. Here, we report on the scientific content of the Workshop and identify the key themes that emerged. The subject matter of the Workshop reflected the ongoing developments of low-field MRI as an accessible imaging modality that may expand the usage of MRI through cost reduction, portability, and ease of installation. Many talks in this Workshop addressed the use of computational power, efficient acquisitions, and contemporary hardware to overcome the SNR limitations associated with low field strength. Participants discussed the selection of appropriate clinical applications that leverage the unique capabilities of low-field MRI within traditional radiology practices, other point-of-care settings, and the broader community. The notion of "image quality" versus "information content" was also discussed, as images from low-field portable systems that are purpose-built for clinical decision-making may not replicate the current standard of clinical imaging. Speakers also described technical challenges and infrastructure challenges related to portability and widespread dissemination, and speculated about future directions for the field to improve the technology and establish clinical value.
Assuntos
Imageamento por Ressonância Magnética , Radiologia , Humanos , Imageamento por Ressonância Magnética/métodos , SoftwareRESUMO
T1 relaxation times of the 14 T1 phantom spheres that make up the standard International Society for Magnetic Resonance in Medicine (ISMRM)/National Institute of Standards and Technology (NIST) system phantom are reported at 7 T. T1 values of six of the 14 T1 spheres at 7 T (with T1 > 270 ms) have been reported previously, but, to the best of our knowledge, not all of the T1s of the 14 T1 spheres at 7 T have been reported before. Given the increasing number of 7-T MRI systems in clinical settings and the increasing need for T1 phantoms that cover a wide range of T1 relaxation times to evaluate rapid T1 mapping techniques at 7 T, it is of high interest to obtain accurate T1 values for all the ISMRM/NIST T1 spheres at 7 T. In this work, T1 relaxation time was measured on a 7-T MRI scanner using an inversion-recovery spin-echo pulse sequence and derived by curve fitting to a signal equation that exhibits insensitivity to B 1 + inhomogeneity. Day-to-day reproducibility was within 0.4% and differences between two different RF coils within 1.5%. T1s of a subset of the 14 spheres were also measured by NMR at 7 T for comparison, and the T1 results were consistent between the MRI and NMR measurements. T1 measurements performed at 3 T on the same 14 spheres using the same sequence and fitting method yielded good agreement (mean percentage difference of -0.4%) with the reference T1 values available from the NIST, reflecting the accuracy of the reported technique despite being without the standard phantom housing. We found that the T1 values of all 14 NiCl2 spheres are consistently lower at 7 T than at 3 T. Although our results were well reproduced, this study represents initial work to quantify the 7-T T1 values of all 14 NIST T1 spheres outside of the standard housing and does not warrant reproducibility of the ISMRM/NIST system phantom as a whole. A future study to assess the T1 values of a version of the ISMRM/NIST system phantom that fits inside typical commercial coils at 7 T will be very helpful. Nonetheless, the details on our acquisition and curve-fitting methods reported here allow the T1 measurements to be reproduced elsewhere. The T1 values of all 14 spheres reported here will be valuable for the development of quantitative MR fingerprinting and rapid T1 mapping for a large variety of research projects, not only in neuroimaging but also in body MRI, musculoskeletal MRI, and gadolinium contrast-enhanced MRI, each of which is concerned with much shortened T1.
Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Valores de ReferênciaRESUMO
BACKGROUND: To date, the accuracy and variability of diffusion-weighted MRI (DW-MRI) metrics have been reported in a limited number of scanner/protocol/coil combinations. PURPOSE: To evaluate the reproducibility of DW-MRI estimates across multiple scanners and DW-MRI protocols and to assess the effects of using an 8-channel vs. 16-channel breast coil in a breast phantom. STUDY TYPE: Prospective. PHANTOM: Breast phantom containing tubes of water and differing polyvinylpyrrolidone (PVP) concentrations with apparent diffusion coefficients (ADCs) matching breast tissue. FIELD STRENGTH/SEQUENCE: 3 T (three standard and one wide bore), three DW-MRI single-shot echo planar imaging protocols of varying acquired spatial resolution. ASSESSMENT: Accuracy of estimated ADCs was assessed using percent differences (PD) relative to nuclear magnetic resonance spectroscopy-derived reference values. Coefficients of variation (CV) were calculated to determine variation across scanners. CVs based on the median standard deviation (CVM ) were used to evaluate tube-specific dispersion using 8- or 16-channel coils at a single scanner. ADCs of PVP-containing tubes were additionally normalized by the median water tube ADC to account for temperature effects. STATISTICAL TESTS: Two-way repeated measures analysis of variance and post hoc tests were used to evaluate differences in ADC, CV, and CVM across scanners and protocols (α = 0.05). RESULTS: ADCs were within 11% (interquartile range [IQR] 7%) of reference values and significantly improved to 2% (IQR 7%) after normalization to an internal water reference. Normalization significantly reduced interscanner variability of ADC estimates from 7% to 4%. DW-MRI protocol did not affect ADC accuracy; however, the clinical and higher-resolution clinical protocols resulted in the greatest (9%) and least (6%) interscanner variability, respectively. The 8- and 16-channel receive coils yielded similar accuracy (PD: 12% vs. 16%) and precision (CVM : 2.7% vs. 2.9%). DATA CONCLUSION: Normalization by an internal reference improved interscanner ADC reproducibility. High-resolution protocols yielded comparably accurate and significantly less variable ADCs compared to a clinical standard protocol. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.
Assuntos
Mama , Imagem de Difusão por Ressonância Magnética , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Estudos Prospectivos , Mama/diagnóstico por imagem , Imagens de FantasmasRESUMO
INTRODUCTION: A long T2 relaxation time can reflect oedema, and myocardial inflammation when combined with increased plasma troponin levels. Cardiovascular magnetic resonance (CMR) T2 mapping therefore has potential to provide a key diagnostic and prognostic biomarkers. However, T2 varies by scanner, software, and sequence, highlighting the need for standardization and for a quality assurance system for T2 mapping in CMR. AIM: To fabricate and assess a phantom dedicated to the quality assurance of T2 mapping in CMR. METHOD: A T2 mapping phantom was manufactured to contain 9 T1 and T2 (T1|T2) tubes to mimic clinically relevant native and post-contrast T2 in myocardium across the health to inflammation spectrum (i.e., 43-74 ms) and across both field strengths (1.5 and 3 T). We evaluated the phantom's structural integrity, B0 and B1 uniformity using field maps, and temperature dependence. Baseline reference T1|T2 were measured using inversion recovery gradient echo and single-echo spin echo (SE) sequences respectively, both with long repetition times (10 s). Long-term reproducibility of T1|T2 was determined by repeated T1|T2 mapping of the phantom at baseline and at 12 months. RESULTS: The phantom embodies 9 internal agarose-containing T1|T2 tubes doped with nickel di-chloride (NiCl2) as the paramagnetic relaxation modifier to cover the clinically relevant spectrum of myocardial T2. The tubes are surrounded by an agarose-gel matrix which is doped with NiCl2 and packed with high-density polyethylene (HDPE) beads. All tubes at both field strengths, showed measurement errors up to ≤ 7.2 ms [< 14.7%] for estimated T2 by balanced steady-state free precession T2 mapping compared to reference SE T2 with the exception of the post-contrast tube of ultra-low T1 where the deviance was up to 16 ms [40.0%]. At 12 months, the phantom remained free of air bubbles, susceptibility, and off-resonance artifacts. The inclusion of HDPE beads effectively flattened the B0 and B1 magnetic fields in the imaged slice. Independent temperature dependency experiments over the 13-38 °C range confirmed the greater stability of shorter vs longer T1|T2 tubes. Excellent long-term (12-month) reproducibility of measured T1|T2 was demonstrated across both field strengths (all coefficients of variation < 1.38%). CONCLUSION: The T2 mapping phantom demonstrates excellent structural integrity, B0 and B1 uniformity, and reproducibility of its internal tube T1|T2 out to 1 year. This device may now be mass-produced to support the quality assurance of T2 mapping in CMR.
Assuntos
Imageamento por Ressonância Magnética , Polietileno , Humanos , Reprodutibilidade dos Testes , Sefarose , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética/métodos , Miocárdio/patologia , Imagens de Fantasmas , Espectroscopia de Ressonância Magnética , Inflamação/patologiaRESUMO
OBJECTIVE: To measure healthy brain [Formula: see text] and [Formula: see text] relaxation times at 0.064 T. MATERIALS AND METHODS: [Formula: see text] and [Formula: see text] relaxation times were measured in vivo for 10 healthy volunteers using a 0.064 T magnetic resonance imaging (MRI) system and for 10 test samples on both the MRI and a separate 0.064 T nuclear magnetic resonance (NMR) system. In vivo [Formula: see text] and [Formula: see text] values are reported for white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) for automatic segmentation regions and manual regions of interest (ROIs). RESULTS: [Formula: see text] sample measurements on the MRI system were within 10% of the NMR measurement for 9 samples, and one sample was within 11%. Eight [Formula: see text] sample MRI measurements were within 25% of the NMR measurement, and the two longest [Formula: see text] samples had more than 25% variation. Automatic segmentations generally resulted in larger [Formula: see text] and [Formula: see text] estimates than manual ROIs. DISCUSSION: [Formula: see text] and [Formula: see text] times for brain tissue were measured at 0.064 T. Test samples demonstrated accuracy in WM and GM ranges of values but underestimated long [Formula: see text] in the CSF range. This work contributes to measuring quantitative MRI properties of the human body at a range of field strengths.
Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Espectroscopia de Ressonância Magnética , Substância Cinzenta/diagnóstico por imagem , Substância Branca/diagnóstico por imagemRESUMO
OBJECTIVE: Temperature controlled T1 and T2 relaxation times are measured on NiCl2 and MnCl2 solutions from the ISMRM/NIST system phantom at low magnetic field strengths of 6.5 mT, 64 mT and 550 mT. MATERIALS AND METHODS: The T1 and T2 were measured of five samples with increasing concentrations of NiCl2 and five samples with increasing concentrations of MnCl2. All samples were scanned at 6.5 mT, 64 mT and 550 mT, at sample temperatures ranging from 10 °C to 37 °C. RESULTS: The NiCl2 solutions showed little change in T1 and T2 with magnetic field strength, and both relaxation times decreased with increasing temperature. The MnCl2 solutions showed an increase in T1 and a decrease in T2 with increasing magnetic field strength, and both T1 and T2 increased with increasing temperature. DISCUSSION: The low field relaxation rates of the NiCl2 and MnCl2 arrays in the ISMRM/NIST system phantom are investigated and compared to results from clinical field strengths of 1.5 T and 3.0 T. The measurements can be used as a benchmark for MRI system functionality and stability, especially when MRI systems are taken out of the radiology suite or laboratory and into less traditional environments.
Assuntos
Benchmarking , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Campos MagnéticosRESUMO
This review on brain multiparametric quantitative MRI (MP-qMRI) focuses on the primary subset of quantitative MRI (qMRI) parameters that represent the mobile ("free") and bound ("motion-restricted") proton pools. Such primary parameters are the proton densities, relaxation times, and magnetization transfer parameters. Diffusion qMRI is also included because of its wide implementation in complete clinical MP-qMRI application. MP-qMRI advances were reviewed over the past 2 decades, with substantial progress observed toward accelerating image acquisition and increasing mapping accuracy. Areas that need further investigation and refinement are identified as follows: (a) the biologic underpinnings of qMRI parameter values and their changes with age and/or disease and (b) the theoretical limitations implicitly built into most qMRI mapping algorithms that do not distinguish between the different spatial scales of voxels versus spin packets, the central physical object of the Bloch theory. With rapidly improving image processing techniques and continuous advances in computer hardware, MP-qMRI has the potential for implementation in a wide range of clinical applications. Currently, three emerging MP-qMRI applications are synthetic MRI, macrostructural qMRI, and microstructural tissue modeling.
Assuntos
Produtos Biológicos , Prótons , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodosRESUMO
On behalf of the International Society for Magnetic Resonance in Medicine (ISMRM) Quantitative MR Study Group, this article provides an overview of considerations for the development, validation, qualification, and dissemination of quantitative MR (qMR) methods. This process is framed in terms of two central technical performance properties, i.e., bias and precision. Although qMR is confounded by undesired effects, methods with low bias and high precision can be iteratively developed and validated. For illustration, two distinct qMR methods are discussed throughout the manuscript: quantification of liver proton-density fat fraction, and cardiac T1 . These examples demonstrate the expansion of qMR methods from research centers toward widespread clinical dissemination. The overall goal of this article is to provide trainees, researchers, and clinicians with essential guidelines for the development and validation of qMR methods, as well as an understanding of necessary steps and potential pitfalls for the dissemination of quantitative MR in research and in the clinic.
Assuntos
Imageamento por Ressonância Magnética , Terapia com Prótons , Viés , Espectroscopia de Ressonância Magnética , Prótons , Reprodutibilidade dos TestesRESUMO
PURPOSE: A standard MRI system phantom has been designed and fabricated to assess scanner performance, stability, comparability and assess the accuracy of quantitative relaxation time imaging. The phantom is unique in having traceability to the International System of Units, a high level of precision, and monitoring by a national metrology institute. Here, we describe the phantom design, construction, imaging protocols, and measurement of geometric distortion, resolution, slice profile, signal-to-noise ratio (SNR), proton-spin relaxation times, image uniformity and proton density. METHODS: The system phantom, designed by the International Society of Magnetic Resonance in Medicine ad hoc committee on Standards for Quantitative MR, is a 200 mm spherical structure that contains a 57-element fiducial array; two relaxation time arrays; a proton density/SNR array; resolution and slice-profile insets. Standard imaging protocols are presented, which provide rapid assessment of geometric distortion, image uniformity, T1 and T2 mapping, image resolution, slice profile, and SNR. RESULTS: Fiducial array analysis gives assessment of intrinsic geometric distortions, which can vary considerably between scanners and correction techniques. This analysis also measures scanner/coil image uniformity, spatial calibration accuracy, and local volume distortion. An advanced resolution analysis gives both scanner and protocol contributions. SNR analysis gives both temporal and spatial contributions. CONCLUSIONS: A standard system phantom is useful for characterization of scanner performance, monitoring a scanner over time, and to compare different scanners. This type of calibration structure is useful for quality assurance, benchmarking quantitative MRI protocols, and to transition MRI from a qualitative imaging technique to a precise metrology with documented accuracy and uncertainty.
Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Razão Sinal-RuídoRESUMO
BACKGROUND: Diffusion-weighted (DW) echo-planar imaging (EPI) is prone to geometric distortions due to B0 inhomogeneities. Both prospective and retrospective approaches have been developed to decrease and correct such distortions. PURPOSE: The purpose of this work was to evaluate the performance of reduced-field-of-view (FOV) acquisition and retrospective distortion correction methods in decreasing distortion artifacts for breast imaging. Coverage of the axilla in reduced-FOV DW magnetic resonance imaging (MRI) and residual distortion were also assessed. STUDY TYPE: Retrospective. POPULATION/PHANTOM: Breast phantom and 169 women (52.4 ± 13.4 years old) undergoing clinical breast MRI. FIELD STRENGTH/SEQUENCE: A 3.0 T/ full- and reduced-FOV DW gradient-echo EPI sequence. ASSESSMENT: Performance of reversed polarity gradient (RPG) and FSL topup in correcting breast full- and reduced-FOV EPI data was evaluated using the mutual information (MI) metric between EPI and anatomical images. Two independent breast radiologists determined if coverage on both EPI data sets was adequate to evaluate axillary nodes and identified residual nipple distortion artifacts. STATISTICAL TESTS: Two-way repeated-measures analyses of variance and post hoc tests were used to identify differences between EPI modality and distortion correction method. Generalized linear mixed effects models were used to evaluate differences in axillary coverage and residual nipple distortion. RESULTS: In a breast phantom, residual distortions were 0.16 ± 0.07 cm and 0.22 ± 0.13 cm in reduced- and full-FOV EPI with both methods, respectively. In patients, MI significantly increased after distortion correction of full-FOV (11 ± 5% and 18 ± 9%, RPG and topup) and reduced-FOV (8 ± 4% both) EPI data. Axillary nodes were observed in 99% and 69% of the cases in full- and reduced-FOV EPI images. Residual distortion was observed in 93% and 0% of the cases in full- and reduced-FOV images. DATA CONCLUSION: Minimal distortion was achieved with RPG applied to reduced-FOV EPI data. RPG improved distortions for full-FOV images but with more modest improvements and limited correction near the nipple. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 1.
Assuntos
Artefatos , Imagem Ecoplanar , Adulto , Idoso , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos RetrospectivosRESUMO
The coronavirus disease 2019 (COVID-19) pandemic led to the need for tracking of physical contacts and potential exposure to disease. Traditional contact tracing can be augmented by electronic tools called "electronic contact tracing" or "exposure notification.". Some methods were built to work with smartphones; however, smartphones are not prevalent in some high-contact areas (e.g., schools and nursing homes). We present the design and initial testing of low-cost, highly privacy preserving wearable exposure notification devices. Several devices were constructed based on existing hardware and operated independently of a smartphone. The method (devices and analyses) was not able to reliably use the received signal strength indicator (RSSI) as a proxy for distance between pairs of devices; the accuracy of RSSI as a proxy for distance decreased dramatically outside of the idealized conditions. However, even an imperfect device could be useful for research on how people use and move through spaces. With some improvement, these devices could be used to understand disease spread and human or animal interaction in indoor environments.
RESUMO
PURPOSE: To determine baseline accuracy and reproducibility of T1 and T2 relaxation times over 12 months on a dedicated radiotherapy MRI scanner. METHODS: An International Society of Magnetic Resonance in Medicine/National Institute of Standards and Technology (ISMRM/NIST) System Phantom was scanned monthly on a 3T MRI scanner for 1 year. T1 was measured using inversion recovery (T1 -IR) and variable flip angle (T1 -VFA) sequences and T2 was measured using a multi-echo spin echo (T2 -SE) sequence. For each vial in the phantom, accuracy errors (%bias) were determined by the relative differences in measured T1 and T2 times compared to reference values. Reproducibility was measured by the coefficient of variation (CV) of T1 and T2 measurements across monthly scans. Accuracy and reproducibility were mainly assessed on vials with relaxation times expected to be in physiological ranges at 3T. RESULTS: A strong linear correlation between measured and reference relaxation times was found for all sequences tested (R2 > 0.997). Baseline bias (and CV[%]) for T1 -IR, T1 -VFA and T2 -SE sequences were +2.0% (2.1), +6.5% (4.2), and +8.5% (1.9), respectively. CONCLUSIONS: The accuracy and reproducibility of T1 and T2 on the scanner were considered sufficient for the sequences tested. No longitudinal trends of variation were deduced, suggesting less frequent measurements are required following the establishment of baselines.
Assuntos
Imageamento por Ressonância Magnética , Humanos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos TestesRESUMO
PURPOSE: MRI parameters, such as T1 , T2 , and ADC, of tissue-mimicking materials in MRI phantoms can exhibit temperature dependence, and bore temperatures can vary over a 10°C range across different MRI systems. If this variation is not accurately corrected for, the quantitative nature of reference or phantom measurements is irrelevant. Available thermometers require opening the phantoms to probe the temperature, which can introduce contaminants that may affect the stability and accuracy of the phantom. An integrated, MRI-visible thermometer that can be read using typical imaging protocols is needed. THEORY AND METHODS: An MRI-compatible thermometer was designed using liquid crystals (LCs) that exhibit rapid transitions between the LC cholesteric state and isotropic state in the room temperature range spanning 17°C to 23°C in 1.0°C increments. The LC thermometer was assessed visually and using superconducting quantum interference device magnetometry, NMR, and MRI techniques. RESULTS: The signal generated from the LC thermometer was visible with spin-echo and gradient-echo MRI images. The LC state transition temperatures were visually referenced to a National Institute of Standards and Technology-traceable thermometer, and these LC state transitions were confirmed using superconducting quantum interference device magnetometry and NMR. CONCLUSIONS: The LC MR-visible thermometer had measurable changes in relative signal with temperature, which were invariant to a variety of imaging sequences used.
Assuntos
Cristais Líquidos , Termômetros , Imageamento por Ressonância Magnética , Imagens de Fantasmas , TemperaturaRESUMO
Magnetic resonance fingerprinting (MRF) is a general framework to quantify multiple MR-sensitive tissue properties with a single acquisition. There have been numerous advances in MRF in the years since its inception. In this work we highlight some of the recent technical developments in MRF, focusing on sequence optimization, modifications for reconstruction and pattern matching, new methods for partial volume analysis, and applications of machine and deep learning. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:993-1007.
Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Encéfalo , Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância Magnética , Imagens de FantasmasRESUMO
Magnetic resonance fingerprinting (MRF) is a powerful quantitative MRI technique capable of acquiring multiple property maps simultaneously in a short timeframe. The MRF framework has been adapted to a wide variety of clinical applications, but faces challenges in technical development, and to date has only demonstrated repeatability and reproducibility in small studies. In this review, we discuss the current implementations of MRF and their use in a clinical setting. Based on this analysis, we highlight areas of need that must be addressed before MRF can be fully adopted into the clinic and make recommendations to the MRF community on standardization and validation strategies of MRF techniques. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:675-692.
Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos TestesRESUMO
BACKGROUND: The T1 Mapping and Extracellular volume (ECV) Standardization (T1MES) program explored T1 mapping quality assurance using a purpose-developed phantom with Food and Drug Administration (FDA) and Conformité Européenne (CE) regulatory clearance. We report T1 measurement repeatability across centers describing sequence, magnet, and vendor performance. METHODS: Phantoms batch-manufactured in August 2015 underwent 2 years of structural imaging, B0 and B1, and "reference" slow T1 testing. Temperature dependency was evaluated by the United States National Institute of Standards and Technology and by the German Physikalisch-Technische Bundesanstalt. Center-specific T1 mapping repeatability (maximum one scan per week to minimum one per quarter year) was assessed over mean 358 (maximum 1161) days on 34 1.5 T and 22 3 T magnets using multiple T1 mapping sequences. Image and temperature data were analyzed semi-automatically. Repeatability of serial T1 was evaluated in terms of coefficient of variation (CoV), and linear mixed models were constructed to study the interplay of some of the known sources of T1 variation. RESULTS: Over 2 years, phantom gel integrity remained intact (no rips/tears), B0 and B1 homogenous, and "reference" T1 stable compared to baseline (% change at 1.5 T, 1.95 ± 1.39%; 3 T, 2.22 ± 1.44%). Per degrees Celsius, 1.5 T, T1 (MOLLI 5s(3s)3s) increased by 11.4 ms in long native blood tubes and decreased by 1.2 ms in short post-contrast myocardium tubes. Agreement of estimated T1 times with "reference" T1 was similar across Siemens and Philips CMR systems at both field strengths (adjusted R2 ranges for both field strengths, 0.99-1.00). Over 1 year, many 1.5 T and 3 T sequences/magnets were repeatable with mean CoVs < 1 and 2% respectively. Repeatability was narrower for 1.5 T over 3 T. Within T1MES repeatability for native T1 was narrow for several sequences, for example, at 1.5 T, Siemens MOLLI 5s(3s)3s prototype number 448B (mean CoV = 0.27%) and Philips modified Look-Locker inversion recovery (MOLLI) 3s(3s)5s (CoV 0.54%), and at 3 T, Philips MOLLI 3b(3s)5b (CoV 0.33%) and Siemens shortened MOLLI (ShMOLLI) prototype 780C (CoV 0.69%). After adjusting for temperature and field strength, it was found that the T1 mapping sequence and scanner software version (both P < 0.001 at 1.5 T and 3 T), and to a lesser extent the scanner model (P = 0.011, 1.5 T only), had the greatest influence on T1 across multiple centers. CONCLUSION: The T1MES CE/FDA approved phantom is a robust quality assurance device. In a multi-center setting, T1 mapping had performance differences between field strengths, sequences, scanner software versions, and manufacturers. However, several specific combinations of field strength, sequence, and scanner are highly repeatable, and thus, have potential to provide standardized assessment of T1 times for clinical use, although temperature correction is required for native T1 tubes at least.