Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Genes Immun ; 20(3): 255-260, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29904098

RESUMO

Pathogens of past and current infections have been identified directly by means of PCR or indirectly by measuring a specific immune response (e.g., antibody titration). Using a novel approach, Emerson and colleagues showed that the cytomegalovirus serostatus can also be accurately determined by using a T cell receptor repertoire data mining approach. In this study, we have sequenced the CD4+ memory T cell receptor repertoire of a Belgian cohort with known cytomegalovirus serostatus. A random forest classifier was trained on the CMV specific T cell receptor repertoire signature and used to classify individuals in the Belgian cohort. This study shows that the novel approach can be reliably replicated with an equivalent performance as that reported by Emerson and colleagues. Additionally, it provides evidence that the T cell receptor repertoire signature is to a large extent present in the CD4+ memory repertoire.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Mineração de Dados/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Testes Sorológicos/métodos , Adulto , Infecções por Citomegalovirus/sangue , Humanos , Memória Imunológica , Receptores de Antígenos de Linfócitos T/genética , Testes Sorológicos/normas
2.
Elife ; 112022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074048

RESUMO

Antigen recognition through the T cell receptor (TCR) αß heterodimer is one of the primary determinants of the adaptive immune response. Vaccines activate naïve T cells with high specificity to expand and differentiate into memory T cells. However, antigen-specific memory CD4 T cells exist in unexposed antigen-naïve hosts. In this study, we use high-throughput sequencing of memory CD4 TCRß repertoire and machine learning to show that individuals with preexisting vaccine-reactive memory CD4 T cell clonotypes elicited earlier and higher antibody titers and mounted a more robust CD4 T cell response to hepatitis B vaccine. In addition, integration of TCRß sequence patterns into a hepatitis B epitope-specific annotation model can predict which individuals will have an early and more vigorous vaccine-elicited immunity. Thus, the presence of preexisting memory T cell clonotypes has a significant impact on immunity and can be used to predict immune responses to vaccination.


Immune cells called CD4 T cells help the body build immunity to infections caused by bacteria and viruses, or after vaccination. Receptor proteins on the outside of the cells recognize pathogens, foreign molecules called antigens, or vaccine antigens. Vaccine antigens are usually inactivated bacteria or viruses, or fragments of these pathogens. After recognizing an antigen, CD4 T cells develop into memory CD4 T cells ready to defend against future infections with the pathogen. People who have never been exposed to a pathogen, or have never been vaccinated against it, may nevertheless have preexisting memory cells ready to defend against it. This happens because CD4 T cells can recognize multiple targets, which enables the immune system to be ready to defend against both new and familiar pathogens. Elias, Meysman, Bartholomeus et al. wanted to find out whether having preexisting memory CD4 T cells confers an advantage for vaccine-induced immunity. Thirty-four people who were never exposed to hepatitis B or vaccinated against it participated in the study. These individuals provided blood samples before vaccination, with 2 doses of the hepatitis B vaccine, and at 3 time points afterward. Using next generation immune sequencing and machine learning techniques, Elias et al. analyzed the individuals' memory CD4 T cells before and after vaccination. The experiments showed that preexisting memory CD4 T cells may determine vaccination outcomes, and people with more preexisting memory cells develop quicker and stronger immunity after vaccination against hepatitis B. This information may help scientists to better understand how people develop immunity to pathogens. It may guide them develop better vaccines or predict who will develop immunity after vaccination.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Hepatite B/prevenção & controle , Adulto , Vacinas contra Hepatite B , Humanos , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T alfa-beta , Vacinação , Adulto Jovem
3.
Vaccine ; 38(16): 3218-3226, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32165045

RESUMO

Thanks to the recommendation of a combined Measles/Mumps/Rubella (MMR) vaccine, like Priorix®, these childhood diseases are less common now. This is beneficial to limit the spread of these diseases and work towards their elimination. However, the measles, mumps and rubella antibody titers show a large variability in short- and long-term immunity. The recent outbreaks worldwide of measles and mumps and previous studies, which mostly focused on only one of the three virus responses, illustrate that there is a clear need for better understanding the immune responses after vaccination. Our healthy cohort was already primed with the MMR antigens in their childhood. In this study, the adult volunteers received one Priorix® vaccine dose at day 0. First, we defined 4 different groups of responders, based on their antibody titers' evolution over 4 time points (Day 0, 21, 150 and 365). This showed a high variability within and between individuals. Second, we determined transcriptome profiles using 3'mRNA sequencing at day 0, 3 and 7. Using two analytical approaches, "one response group per time point" and "a time comparison per response group", we correlated the short-term gene expression profiles to the different response groups. In general, the list of differentially expressed genes is limited, however, most of them are clearly immune-related and upregulated at day 3 and 7, compared to the baseline day 0. Depending on the specific response group there are overlapping signatures for two of the three viruses. Antibody titers and transcriptomics data showed that an additional Priorix vaccination does not facilitate an equal immune response against the 3 viruses or among different vaccine recipients.


Assuntos
Anticorpos Antivirais , Vacina contra Sarampo-Caxumba-Rubéola/imunologia , Caxumba , Rubéola (Sarampo Alemão) , Adulto , Humanos , Sarampo , Caxumba/prevenção & controle , Rubéola (Sarampo Alemão)/prevenção & controle , Transcriptoma , Vacinação , Vacinas Combinadas
4.
Vaccine ; 37(19): 2537-2553, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30975567

RESUMO

Clinical trials covering the immunogenicity of a vaccine aim to study the longitudinal dynamics of certain immune cells after vaccination. The corresponding immunogenicity datasets are mainly analyzed by the use of statistical (mixed effects) models. This paper proposes the use of mathematical ordinary differential equation (ODE) models, combined with a mixed effects approach. ODE models are capable of translating underlying immunological post vaccination processes into mathematical formulas thereby enabling a testable data analysis. Mixed models include both population-averaged parameters (fixed effects) and individual-specific parameters (random effects) for dealing with inter- and intra-individual variability, respectively. This paper models B-cell and T-cell datasets of a phase I/II, open-label, randomized, parallel-group study (NCT00492648) in which the immunogenicity of a new Herpes Zoster vaccine (Shingrix) is compared with the original Varicella Zoster Virus vaccine (Varilrix). Since few significant correlations were found between the B-cell and T-cell datasets, each dataset was modeled separately. By following a general approach to both the formulation of several different models and the procedure of selecting the most suitable model, we were able to propose a mathematical ODE mixed-effects model for each dataset. As such, the use of ODE-based mixed effects models offers a suitable framework for handling longitudinal vaccine immunogenicity data. Moreover, this approach allows testing for differences in immunological processes between vaccines or schedules. We found that the Shingrix vaccination schedule led to a more pronounced proliferation of T-cells, without a difference in T-cell decay rate compared to the Varilrix vaccination schedule.


Assuntos
Linfócitos B/imunologia , Vacina contra Herpes Zoster/imunologia , Herpesvirus Humano 3/imunologia , Modelos Teóricos , Linfócitos T/imunologia , Infecção pelo Vírus da Varicela-Zoster/imunologia , Adolescente , Adulto , Idoso , Algoritmos , Anticorpos Antivirais/imunologia , Linfócitos B/metabolismo , Humanos , Imunogenicidade da Vacina , Ativação Linfocitária , Pessoa de Meia-Idade , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Linfócitos T/metabolismo , Vacinação , Infecção pelo Vírus da Varicela-Zoster/prevenção & controle , Adulto Jovem
5.
Vaccine ; 36(42): 6282-6289, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30205979

RESUMO

INTRODUCTION: As the hepatitis B virus is widely spread and responsible for considerable morbidity and mortality, WHO recommends vaccination from infancy to reduce acute infection and chronic carriers. However, current subunit vaccines are not 100% efficacious and leave 5-10% of recipients unprotected. METHODS: To evaluate immune responses after Engerix-B vaccination, we determined, using mRNA-sequencing, whole blood early gene expression signatures before, at day 3 and day 7 after the first dose and correlated this with the resulting antibody titer after two vaccine doses. RESULTS: Our results indicate that immune related genes are differentially expressed in responders mostly at day 3 and in non-responders mostly at day 7. The most remarkable difference between responders and non-responders were the differentially expressed genes before vaccination. The granulin precursor gene (GRN) was significantly downregulated in responders while upregulated in non-responders at day 0. Furthermore, absolute granulocytes numbers were significantly higher in non-responders at day 0. CONCLUSION: The non-responders already showed an activated state of the immune system before vaccination. Furthermore, after vaccination, they exhibited a delayed and partial immune response in comparison to the responders. Our data may indicate that the baseline and untriggered immune system can influence the response upon hepatitis B vaccination.


Assuntos
Perfilação da Expressão Gênica/métodos , Vacinas contra Hepatite B/uso terapêutico , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/patogenicidade , Hepatite B/genética , Hepatite B/prevenção & controle , Adulto , Feminino , Voluntários Saudáveis , Anticorpos Anti-Hepatite B/imunologia , Humanos , Esquemas de Imunização , Masculino , Pessoa de Meia-Idade , Vacinação/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA