Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 240(5): 971-81, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24903360

RESUMO

MAIN CONCLUSION: Anthocyanins in upper (adaxial) leaf tissues provide greater photoprotection than in lower (abaxial) tissues, but also predispose tissues to increased shade acclimation and, consequently, reduced photosynthetic capacity. Abaxial anthocyanins may be a compromise between these costs/benefits. Plants adapted to shaded understory environments often exhibit red/purple anthocyanin pigmentation in lower (abaxial) leaf surfaces, but rarely in upper (adaxial) surfaces. The functional significance of this color pattern in leaves is poorly understood. Here, we test the hypothesis that abaxial anthocyanins protect leaves of understory plants from photo-oxidative stress via light attenuation during periodic exposure to high incident sunlight in the forest understory, without interfering with sunlight capture and photosynthesis during shade conditions. We utilize a cultivar of Colocasia esculenta exhibiting adaxial and abaxial anthocyanin variegation within individual leaves to compare tissues with the following color patterns: green adaxial, green abaxial (GG), green adaxial, red abaxial (GR), red adaxial, green abaxial (RG), and red adaxial, red abaxial (RR). Consistent with a photoprotective function of anthocyanins, tissues exhibited symptoms of increasing photoinhibition in the order (from least to greatest): RR, RG, GR, GG. Anthocyanic tissues also showed symptoms of shade acclimation (higher total chl, lower chl a/b) in the same relative order. Inconsistent with our hypothesis, we did not observe any differences in photosynthetic CO2 uptake under shade conditions between the tissue types. However, GG and GR had significantly (39 %) higher photosynthesis at saturating irradiance (A sat) than RG and RR. Because tissue types did not differ in nitrogen content, these patterns likely reflect differences in resource allocation at the tissue level, with greater nitrogen allocated toward energy processing in GG and GR, and energy capture in RG and RR (consistent with relative sun/shade acclimation). We conclude that abaxial anthocyanins are likely advantageous in understory environments because they provide some photoprotection during high-light exposure, but without the cost of decreased A sat associated with adaxial anthocyanin-induced shade syndrome.


Assuntos
Antocianinas/metabolismo , Colocasia/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Clorofila/metabolismo , Colocasia/fisiologia , Colocasia/efeitos da radiação , Cor , Fluorescência , Luz , Nitrogênio/metabolismo , Pigmentação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Fatores de Tempo
2.
Molecules ; 19(11): 17810-28, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25372396

RESUMO

Plants growing in high-light environments during winter often exhibit leaf reddening due to synthesis of anthocyanin pigments, which are thought to alleviate photooxidative stress associated with low-temperature photoinhibition through light attenuation and/or antioxidant activity. Seasonal high-light stress can be further exacerbated by a limited photosynthetic capacity, such as nitrogen-deficiency. In the present study, we test the following hypotheses using three populations of the semi-evergreen vine Lonicera japonica: (1) nitrogen deficiency corresponds with reduced photosynthetic capacity; (2) individuals with reduced photosynthetic capacity synthesize anthocyanin pigments in leaves during winter; and (3) anthocyanin pigments help alleviate high-light stress by attenuating green light. All populations featured co-occurring winter-green and winter-red leafed individuals on fully-exposed (high-light), south-facing slopes in the Piedmont of North Carolina, USA. Consistent with our hypotheses, red leaves consistently exhibited significantly lower foliar nitrogen than green leaves, as well as lower total chlorophyll, quantum yield efficiency, carboxylation efficiency, and photosynthesis at saturating irradiance (Asat). Light-response curves measured using ambient sunlight versus red-blue LED (i.e., lacking green wavelengths) demonstrated significantly reduced quantum yield efficiency and a higher light compensation point under sunlight relative to red-blue LED in red leaves, but not in green leaves, consistent with a (green) light-attenuating function of anthocyanin pigments. These results are consistent with the hypothesis that intraspecific anthocyanin synthesis corresponds with nitrogen deficiency and reduced photosynthetic capacity within populations, and support a light-attenuating function of anthocyanin pigments.


Assuntos
Lonicera/metabolismo , Lonicera/fisiologia , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Substâncias Protetoras/metabolismo , Antocianinas/metabolismo , Clorofila/metabolismo , Temperatura Baixa , Cor , Fotossíntese/fisiologia , Estações do Ano , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA