Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 60(2): 225-243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30421977

RESUMO

Cross-contamination can be broadly defined as the transfer, direct or indirect, of microorganisms from a contaminated product to a non-contaminated product. Events that may result in cross-contamination include inadequate hygiene practices, contaminated equipment surfaces, contamination via food handling personnel, further product processing, or storage abuse All of these niches require consistent environmental surveillance systems to monitor microbial harborage sites to prevent foodborne illnesses via cross-contamination. Environmental surveillance is achieved through routine surface sampling of the food contact surfaces and surrounding areas. To better understand cross-contamination, the role of environmental surface transmission during outbreaks due to the presence and persistence of pathogenic microorganisms on various food contact surfaces must be investigated. However, studies on environmental sampling techniques are rarely performed in an actual food processing environment but rather under controlled variables within a laboratory-setting. Moreover, results and conclusions of studies differ because of the considerable variability across surface sampling tools due to individual operator dependency, low recovery rates, and low reproducibility. Information is also often lacking on environmental sampling tools used within a processing facility, the characterization of these tools, and the optimization of recovery of microorganisms for surface sampling. Thus, this review aims to: (1) discuss and compare factors impacting the recovery of microorganisms and the standardization of surface sampling methods for optimal recovery of microorganisms and (2) examine how research strategies could focus more towards the development of standard methodologies for surface sampling.


Assuntos
Monitoramento Ambiental , Doenças Transmitidas por Alimentos , Contaminação de Equipamentos , Contaminação de Alimentos , Manipulação de Alimentos , Microbiologia de Alimentos , Humanos , Reprodutibilidade dos Testes
2.
Nanotechnology ; 23(37): 375703, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22922704

RESUMO

Optical and thermal activity of plasmon-active nanoparticles in transparent dielectric media is of growing interest in thermal therapies, photovoltaics and optoelectronic components in which localized surface plasmon resonance (LSPR) could play a significant role. This work compares a new method to embed gold nanoparticles (AuNPs) in dense, composite films with an extension of a previously introduced method. Microscopic and spectroscopic properties of the two films are related to thermal behavior induced via laser excitation of LSPR at 532 nm in the optically transparent dielectric. Gold nanoparticles were incorporated into effectively nonporous 680 µm thick polydimethylsiloxane (PDMS) films by (1) direct addition of organic-coated 16 nm nanoparticles; and (2) reduction of hydrogen tetrachloroaurate (TCA) into AuNPs. Power loss at LSPR excitation frequency and steady-state temperature maxima at 100 mW continuous laser irradiation showed corresponding increases with respect to the mass of gold introduced into the PDMS films by either method. Measured rates of temperature increase were higher for organic-coated NP, but higher gold content was achieved by reducing TCA, which resulted in larger overall temperature changes in reduced AuNP films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA