Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Res ; 41(11 Pt 1): 4447-52, 1981 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-7306968

RESUMO

Information was sought on the relative extent to which transport-defective, methotrexate-resistant phenotypes emerge among the total subpopulation of resistant phenotypes during therapeutic challenge of leukemic cells in vivo. A number of monoclonal methotrexate-resistant sublines of the L1210 leukemia were derived during methotrexate therapy of leukemic mice and biochemically characterized. Of the total number of 14 sublines derived, five exhibited altered [3H]methotrexate transport alone, five exhibited increased dihydrofolate reductase content alone (2- to 18-fold), and four showed alterations in both of these properties. Methotrexate binding and substrate turnover rate for dihydrofolate reductase appeared to be unchanged in any of the resistant sublines. The relative resistance of each subline was accounted for by the biochemical alterations observed. Among the transport-defective sublines, one subcategory showed a 3- to 4-fold reduction in apparent influx Vmax for [3H]methotrexate, a second category showed both a 5-fold reduction in influx Vmax and a 3-fold increase in the apparent influx Km, and one subline showed only a 2-fold increase in Km. Otherwise, Michaelis-Menten saturation kinetics for influx was observed in each case and in the case of the parental line and the other resistant sublines. None of the resistant sublines exhibited altered efflux of [3H]methotrexate. Steady-state levels measured for intracellular exchangeable (osmotically active) fractions of drug accurately reflected the values for specific kinetic parameters determined for each sensitive and resistant cell line. These studies show that transport-defective phenotypes represent a major category of methotrexate-resistant cell types which emerge initially from leukemic cell populations under therapy in mice. Based on considerations discussed here, it is reasonable to assume that a similar relative occurrence of this phenotype would result during methotrexate therapy of leukemia patients.


Assuntos
Leucemia L1210/metabolismo , Metotrexato/farmacologia , Animais , Transporte Biológico , Linhagem Celular , Resistência a Medicamentos , Cinética , Leucemia L1210/tratamento farmacológico , Metotrexato/metabolismo , Metotrexato/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Fenótipo , Tetra-Hidrofolato Desidrogenase/metabolismo
2.
Cancer Res ; 42(3): 924-8, 1982 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-7059991

RESUMO

The M5076 murine "ovarian" tumor which is naturally refractive to methotrexate was found to be highly responsive to the lipophilic antifolate, metoprine. M5076 cells were markedly deficient in mediated entry of methotrexate. This was in contrast to the L1210 leukemia, a tumor highly responsive to methotrexate but poorly responsive to metoprine. Two L1210 leukemia sublines, with acquired resistance to methotrexate by virtue of a deficiency in mediated entry of drug similar to that seen for M5076 cells, were found to be collaterally sensitive to metoprine. The insensitivity to methotrexate of the M5076 tumor and the two L1210 sublines is associated with low saturability (high Km) and reduced capacity (low Vmax) for mediated influx of drug. 5-Methyltetrahydrofolate, the major circulating folate in blood but not metoprine, shares this mediated route for entry. Therefore, a relatively low level of accumulation of this natural folate in these methotrexate-resistant tumors, in the face of a metoprine-induced blockade at the level of dihydrofolate reductase, probably accounts for the high sensitivity of these tumors to this lipophilic agent. Evidence for this notion was derived during transport and growth experiments in vitro using 5-formyltetrahydrofolate as a model folate coenzyme. The value for influx Vmax of this folate compound in a transport-deficient methotrexate-resistant subline compared to the parental L1210 was reduced to the same extent as that shown for methotrexate. Growth of this resistant L1210 subline showed a greater requirement for this model compound than did the parental line. Also, the concentration necessary for 50% inhibition by metoprine in the presence of this reduced folate was lower in the resistant subline. Inhibition of each cell line by metoprine, on the other hand, was the same when folic acid was used as the folate source. The implications of these findings for the use of lipophilic antifolates as alternative therapy for some methotrexate-resistant tumors are discussed.


Assuntos
Neoplasias Experimentais/metabolismo , Pirimetamina/análogos & derivados , Animais , Transporte Biológico , Linhagem Celular , Resistência a Medicamentos , Formiltetra-Hidrofolatos/metabolismo , Cinética , Leucemia L1210/tratamento farmacológico , Leucemia L1210/metabolismo , Metotrexato/administração & dosagem , Camundongos , Transplante de Neoplasias , Neoplasias Experimentais/tratamento farmacológico , Pirimetamina/farmacologia , Tetra-Hidrofolato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA