Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Elife ; 132024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856179

RESUMO

Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal 5'-phosphate phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5'-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small-molecule screening, protein crystallography, and biolayer interferometry, we discover, visualize, and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.


Vitamin B6 is an important nutrient for optimal brain function, with deficiencies linked to impaired memory, learning and mood in various mental disorders. In older people, vitamin B6 deficiency is also associated with declining memory and dementia. Although this has been known for years, the precise role of vitamin B6 in these disorders and whether supplements can be used to treat or prevent them remained unclear. This is partly because vitamin B6 is actually an umbrella term for a small number of very similar and interchangeable molecules. Only one of these is 'bioactive', meaning it has a biological role in cells. However, therapeutic strategies aimed at increasing only the bioactive form of vitamin B6 are lacking. Previous work showed that disrupting the gene for an enzyme called pyridoxal phosphatase, which breaks down vitamin B6, improves memory and learning in mice. To investigate whether these effects could be mimicked by drug-like compounds, Brenner, Zink, Witzinger et al. used several biochemical and structural biology approaches to search for molecules that bind to and inhibit pyridoxal phosphatase. The experiments showed that a molecule called 7,8-dihydroxyflavone ­ which was previously found to improve memory and learning in laboratory animals with brain disorders ­ binds to pyridoxal phosphatase and inhibits its activity. This led to increased bioactive vitamin B6 levels in mouse brain cells involved in memory and learning. The findings of Brenner et al. suggest that inhibiting pyridoxal phosphatase to increase vitamin B6 levels in the brain could be used together with supplements. The identification of 7,8-dihydroxyflavone as a promising candidate drug is a first step in the discovery of more efficient pyridoxal phosphatase inhibitors. These will be useful experimental tools to directly study whether increasing the levels of bioactive vitamin B6 in the brain may help those with mental health conditions associated with impaired memory, learning and mood.


Assuntos
Inibidores Enzimáticos , Monoéster Fosfórico Hidrolases , Animais , Camundongos , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosfato de Piridoxal/metabolismo , Flavonas/farmacologia , Flavonas/metabolismo , Flavonas/química , Camundongos Endogâmicos C57BL
2.
Nat Commun ; 13(1): 6845, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369173

RESUMO

Targeting the intrinsic metabolism of immune or tumor cells is a therapeutic strategy in autoimmunity, chronic inflammation or cancer. Metabolite repair enzymes may represent an alternative target class for selective metabolic inhibition, but pharmacological tools to test this concept are needed. Here, we demonstrate that phosphoglycolate phosphatase (PGP), a prototypical metabolite repair enzyme in glycolysis, is a pharmacologically actionable target. Using a combination of small molecule screening, protein crystallography, molecular dynamics simulations and NMR metabolomics, we discover and analyze a compound (CP1) that inhibits PGP with high selectivity and submicromolar potency. CP1 locks the phosphatase in a catalytically inactive conformation, dampens glycolytic flux, and phenocopies effects of cellular PGP-deficiency. This study provides key insights into effective and precise PGP targeting, at the same time validating an allosteric approach to control glycolysis that could advance discoveries of innovative therapeutic candidates.


Assuntos
Neoplasias , Monoéster Fosfórico Hidrolases , Humanos , Monoéster Fosfórico Hidrolases/metabolismo , Glicólise
3.
Chemistry ; 17(10): 2903-15, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21294195

RESUMO

Fluorescent 2'-deoxynucleotides containing a protecting group at the 3'-O-position are reversible terminators that enable array-based DNA sequencing-by-synthesis (SBS) approaches. Herein, we describe the synthesis and full characterisation of four reversible terminators bearing a 3'-blocking moiety and a linker-dye system that is removable under the same fluoride-based treatment. Each nucleotide analogue has a different fluorophore attached to the base through a fluoride-cleavable linker and a 2-cyanoethyl moiety as the 3'-blocking group, which can be removed by using a fluoride treatment as well. Furthermore, we identified a DNA polymerase, namely, RevertAid M-MuLV reverse transcriptase, which can incorporate the four modified reversible terminators. The synthesised nucleotides and the optimised DNA polymerase were used on CodeLink slides spotted with hairpin oligonucleotides to demonstrate their potential in a cyclic reversible terminating approach.


Assuntos
Corantes Fluorescentes/síntese química , Fluoretos/química , Vírus da Leucemia Murina/enzimologia , Sondas de Oligonucleotídeos/síntese química , DNA Polimerase Dirigida por RNA/metabolismo , Primers do DNA/metabolismo , Corantes Fluorescentes/química , Estrutura Molecular , Sondas de Oligonucleotídeos/química
4.
J Vis Exp ; (131)2018 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-29364244

RESUMO

The placenta is essential for the growth and development of mammalian embryos. For this reason, numerous genetic alterations and likely also environmental insults that disturb placenta development or function can cause early pregnancy loss in mice and humans. Nevertheless, simple in vitro assays to screen for potential effects on placenta formation are lacking. Here, we focus on modeling the first and critical step in placenta formation, which consists of the attachment of the allantois to the chorion. We describe a method to rapidly assess the attachment of allantoic explants on immobilized α4ß1 integrin, which serves as a chorio-mimetic substrate.This in vitro approach enables a qualitative evaluation of the attachment and spreading behavior of multiple allantois explants at different consecutive time points. The protocol may be used to investigate the effect of targeted mouse mutations, drugs, or various environmental factors that have been linked to pregnancy complications or fetal loss on allantois attachment ex vivo.


Assuntos
Alantoide/citologia , Alantoide/cirurgia , Animais , Técnicas de Cultura de Células/métodos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/cirurgia , Feminino , Camundongos , Gravidez
5.
Nucleic Acids Symp Ser (Oxf) ; (52): 345-6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18776395

RESUMO

Reversible terminators having a fluoride cleavable 3'-O-blocking group are presented. Each nucleotide triphosphate is labelled by a fluorescent dye cleavable by the same reagent. We present here their synthesis, cleavage experiments and polymerase incorporation tests for a possible use in a process of Sequencing-by-Synthesis.


Assuntos
Corantes Fluorescentes/química , Nucleotídeos/síntese química , Análise de Sequência de DNA , Cor , DNA Polimerase Dirigida por DNA/metabolismo , Fluoretos/química , Nucleotídeos/química , Nucleotídeos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA