Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2310540, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597766

RESUMO

Engineered nanomaterials offer numerous benefits to society ranging from environmental remediation to biomedical applications such as drug or vaccine delivery as well as clean and cost-effective energy production and storage, and the promise of a more sustainable way of life. However, as nanomaterials of increasing sophistication enter the market, close attention to potential adverse effects on human health and the environment is needed. Here a critical perspective on nanotoxicological research is provided; the authors argue that it is time to leverage the knowledge regarding the biological interactions of nanomaterials to achieve a more comprehensive understanding of the human health and environmental impacts of these materials. Moreover, it is posited that nanomaterials behave like biological entities and that they should be regulated as such.

2.
Environ Sci Technol ; 57(17): 6989-6998, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37083408

RESUMO

Environmental conditions in aquatic ecosystems transform toxic chemicals over time, influencing their bioavailability and toxicity. Using an environmentally relevant methodology, we tested how exposure to seawater for 1-15 weeks influenced the accumulation and toxicity of copper nanoparticles (nano-Cu) in a marine phytoplankton species. Nano-Cu rapidly agglomerated in seawater and then decreased in size due to Cu dissolution. Dissolution rates declined during weeks 1-4 and remained low until 15 weeks, when the large agglomerates that had formed began to rapidly dissolve again. Marine phytoplankton species were exposed for 5-day periods to nano-Cu aged from 1 to 15 weeks at concentrations from 0.01 to 20 ppm. Toxicity to phytoplankton, measured as change in population growth rate, decreased significantly with particle aging from 0 to 4 weeks but increased substantially in the 15-week treatment due apparently to elevated Cu dissolution of reagglomerated particles. Results indicate that the transformation, fate, and toxicity of nano-Cu in marine ecosystems are influenced by a highly dynamic physicochemical aging process.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Fitoplâncton/fisiologia , Cobre/toxicidade , Ecossistema , Nanopartículas/toxicidade
3.
Int J Cosmet Sci ; 45 Suppl 1: 127-140, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799081

RESUMO

Inorganic nanomaterials such as TiO2 and ZnO provide significant benefits in terms of UV protection, and their use generally has increased in commercial sunscreens. However, more recently there have been concerns about their potential human and ecological health implications, mostly driven by perception rather than by formal assessments. The large and increasing body of literature on these nanomaterials indicates that in most circumstances their risk are minimal. Penetration of the human epidermis is minimal for these nanomaterials, significantly reducing the potential effects that these nanomaterials may pose to internal organs. The excess Zn ion dose is very small compared to normal dietary consumption of Zn, which is a necessary element. The levels of residual nanomaterials or released ions in public swimming pools is also low, with minimal effect in case this water is ingested during swimming or bathing. In natural environments with significant water flow due to wind and water currents, the concentrations of nanomaterials and released ions are generally well below levels that would cause effects in aquatic organisms. However, sensitive habitats with slow currents, such as coral reefs, may accumulate these nanomaterials. The number of studies of the levels and effects of nanomaterials in these sensitive habitats is very small; more research is needed to determine if there is an elevated risk to these ecosystems from the use of sunscreens with these nanomaterials.


Les nanomatériaux inorganiques, comme le dioxyde de titane (TiO2 ) et l'oxyde de zinc (ZnO), offrent des avantages significatifs en ce qui concerne la protection UV, et leur utilisation a généralement augmenté dans les protections solaires commerciales. Cependant, plus récemment, il y a eu des préoccupations concernant leurs implications potentielles sur la santé humaine et écologique, motivées principalement par la perception plutôt que par des évaluations formelles. L'importante quantité croissante de littérature sur ces nanomatériaux indique que dans la plupart des circonstances, leur risque est minime. La pénétration dans l'épiderme humain est minimale pour ces nanomatériaux, ce qui réduit significativement les effets potentiels de ces nanomatériaux sur les organes internes. La dose d'ions Zn en excès est très faible par rapport à la consommation alimentaire normale de Zn, qui est un élément nécessaire. Les niveaux de nanomatériaux résiduels ou d'ions libérés dans les piscines publiques sont également faibles, avec un effet minime dans le cas où cette eau est ingérée pendant la natation ou la baignade. Dans les environnements naturels caractérisés par un flux d'eau important en raison de courants éoliens et de courants aquatiques, les concentrations de nanomatériaux et d'ions libérés sont généralement nettement inférieures aux niveaux qui pourraient avoir des effets sur les organismes aquatiques. En revanche, des habitats sensibles à courants lents, comme les récifs coralliens, peuvent accumuler ces nanomatériaux. Le nombre d'études sur les niveaux et les effets des nanomatériaux dans ces habitats sensibles est très faible. Des recherches supplémentaires sont nécessaires pour déterminer s'il existe un risque élevé pour ces écosystèmes lié à l'utilisation de crèmes solaires comportant ces nanomatériaux.


Assuntos
Nanoestruturas , Protetores Solares , Humanos , Ecossistema , Água , Íons
4.
Environ Sci Technol ; 55(20): 13443-13451, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34029070

RESUMO

Knowledge of dissolution, aggregation, and stability of nanoagrochemicals in root exudates (RE) and soil leachate will contribute to improving delivery mechanisms, transport in plants, and bioavailability. We characterized aggregation, stability, and dissolution of four nanoparticles (NPs) in soybean RE and soil leachate: nano-CeO2, nano-Mn3O4, nano-Cu(OH)2, and nano-MoO3. Aggregation differed considerably in different media. In RE, nano-Cu(OH)2, and nano-MoO3 increased their aggregate size for 5 days; their mean sizes increased from 518 ± 43 nm to 938 ± 32 nm, and from 372 ± 14 nm to 690 ± 65 nm, respectively. Conversely, nano-CeO2 and nano-Mn3O4 disaggregated in RE with time, decreasing from 289 ± 5 nm to 129 ± 10 nm, and from 761 ± 58 nm to 143 ± 18 nm, respectively. Organic acids in RE and soil leachate can be adsorbed onto particle surfaces, influencing aggregation. Charge of the four NPs was negative in contact with RE and soil leachate, due to organic matter present in RE and soil leachate. Dissolution in RE after 6 days was 38%, 1.2%, 0.5%, and <0.1% of the elemental content of MoO3, Cu(OH)2, Mn3O4, and CeO2 NPs. Thus, the bioavailability and efficiency of delivery of the NPs or their active ingredients will be substantially modified soon after they are in contact with RE or soil leachate.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Exsudatos e Transudatos , Óxidos , Solo , Solubilidade
5.
Environ Sci Technol ; 55(20): 13452-13464, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34043337

RESUMO

Metabolomics is an emerging tool to understand the potential implications of nanotechnology, particularly for agriculture. Although molybdenum (Mo) is a known plant micronutrient, little is known of its metabolic perturbations. Here, corn and wheat seedlings were exposed to MoO3 nanoparticles (NPs) and the corresponding bioavailable Mo6+ ion at moderate and excessive levels through root exposures. Physiologically, corn was more sensitive to Mo, which accumulated up to 3.63 times more Mo than wheat. In contrast, metabolomics indicated 21 dysregulated metabolites in corn leaves and 53 in wheat leaves. Five more metabolomic pathways were perturbed in wheat leaves compared to corn leaves. In addition to the overall metabolomics analysis, we also analyzed individual metabolite classes (e.g., amino acids, organic acids, etc.), yielding additional dysregulated metabolites in plant tissues: 7 for corn and 7 for wheat. Most of these were amino acids as well as some sugars. Additional significantly dysregulated metabolites (e.g., asparagine, fructose, reduced glutathione, mannose) were identified in both corn and wheat, due to Mo NP exposure, by employing individual metabolite group analysis. Targeted metabolite analysis of individual groups is thus important for finding additional significant metabolites. We demonstrate the value of metabolomics to study early stage plant responses to NP exposure.


Assuntos
Nanopartículas , Triticum , Metabolômica , Molibdênio , Óxidos , Folhas de Planta , Zea mays
6.
Environ Sci Technol ; 55(6): 3876-3887, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33631933

RESUMO

Metabolomics characterizes low-molecular-weight molecules involved in different biochemical reactions and provides an integrated assessment of the physiological state of an organism. By using liquid chromatography-mass spectrometry targeted metabolomics, we examined the response of green alga Chlamydomonas reinhardtii to sublethal concentrations of inorganic mercury (IHg) and monomethylmercury (MeHg). We quantified the changes in the levels of 93 metabolites preselected based on the disturbed metabolic pathways obtained in a previous transcriptomics study. Metabolites are downstream products of the gene transcription; hence, metabolite quantification provided information about the biochemical status of the algal cells exposed to Hg compounds. The results showed that the alga adjusts its metabolism during 2 h exposure to 5 × 10-9 and 5 × 10-8 mol L-1 IHg and MeHg by increasing the level of various metabolites involved in amino acid and nucleotide metabolism, photorespiration, and tricarboxylic acid (TCA) cycle, as well as the metabolism of fatty acids, carbohydrates, and antioxidants. Most of the metabolic perturbations in the alga were common for IHg and MeHg treatments. However, the exposure to IHg resulted in more pronounced perturbations in the fatty acid and TCA metabolism as compared with the exposure to MeHg. The observed metabolic perturbations were generally consistent with our previously published transcriptomics results for C. reinhardtii exposed to the comparable level of IHg and MeHg. The results highlight the potential of metabolomics for toxicity evaluation, especially to detect effects at an early stage of exposure prior to their physiological appearance.


Assuntos
Chlamydomonas reinhardtii , Mercúrio , Compostos de Metilmercúrio , Antioxidantes , Chlamydomonas reinhardtii/genética , Mercúrio/toxicidade , Metabolômica , Compostos de Metilmercúrio/toxicidade
7.
Environ Sci Technol ; 55(20): 13477-13489, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34240865

RESUMO

Mechanistic understanding of the interaction of copper-based nanomaterials with crops is crucial for exploring their application in precision agriculture and their implications on plant health. We investigated the biological response of soybean (Glycine max) plants to the foliar application of copper hydroxide nanowires (CNWs) at realistic exposure concentrations. A commercial copper based-fungicide (Kocide), dissolved copper ions, and untreated controls were used for comparison to identify unique features at physiological, cellular, and molecular levels. After 32 d of exposure to CNW (0.36, 1.8, and 9 mg CNW/plant), the newly developed tissues accumulated significantly high levels of Cu (18-60 µg/g) compared to Kocide (10 µg/g); however, the rate of Cu translocation from the site of CNW treatment to other tissues was slower compared to other Cu treatments. Like Kocide, CNW exposure at medium and high doses altered Co, Mn, Zn, and Fe accumulation in the tissues and enhanced photosynthetic activities. The proteomic and metabolomic analyses of leaves from CNW-treated soybean plants suggest a dose-dependent response, resulting in the activation of major biological processes, including photosynthesis, energy production, fatty acid metabolism, lignin biosynthesis, and carbohydrate metabolism. In contrast to CNW treatments, Kocide exposure resulted in increased oxidative stress response and amino acid metabolism activation.


Assuntos
Cobre , Nanofios , Cobre/toxicidade , Fertilizantes , Hidróxidos , Proteômica , Glycine max
8.
Environ Sci Technol ; 54(24): 15996-16005, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33232140

RESUMO

Although toxic effects of silver nanoparticles (AgNPs) on aquatic organisms have been extensively reported, responses of nitrogen-fixing cyanobacteria to AgNPs/Ag+ under environmentally relevant concentrations are largely unknown. Here, cyanobacteria were exposed to different concentrations of AgNPs (0.01, 0.1, and 1 mg/L) or Ag+ (0.1, 1, and 10 µg/L) for 96 h. The impacts of AgNPs and Ag+ on photosynthesis and N2 fixation in cyanobacteria (Nostoc sphaeroides) were evaluated. In addition, gas chromatography-mass spectrometry (GC-MS)-based metabolomics was employed to give an instantaneous snapshot of the physiological status of the cells under AgNP/Ag+ exposure. Exposure to high doses of AgNPs (1 mg/L) or Ag+ (10 µg/L) caused growth inhibition, reactive oxygen species overproduction, malondialdehyde accumulation, and decreased N2 fixation. In contrast, low doses of AgNPs (0.01 and 0.1 mg/L) and Ag+ (0.1 and 1 µg/L) did not induce observable responses. However, metabolomics revealed that metabolic reprogramming occurred even at low concentrations of AgNP and Ag+ exposure. Levels of a number of antioxidant defense-related metabolites, especially phenolic acid and polyphenols (gallic acid, resveratrol, isochlorogenic acid, chlorogenic acid, cinnamic acid, 3-hydroxybenzoic acid, epicatechin, catechin, and ferulic acid), significantly decreased in response to AgNPs or Ag+. This indicates that AgNPs and Ag+ can disrupt the antioxidant defense system and disturb nitrogen metabolism even at low-dose exposure. Metabolomics was shown to be a powerful tool to detect "invisible" changes, not observable by typical phenotypic-based endpoints.


Assuntos
Nanopartículas Metálicas , Prata , Antioxidantes , Íons , Nanopartículas Metálicas/toxicidade , Nitrogênio , Nostoc , Prata/toxicidade
9.
J Am Chem Soc ; 140(18): 6027-6032, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29672038

RESUMO

Fresh water cyanobacterial algal blooms represent a major health risk because these organisms produce cylindrospermopsin, a toxic, structurally complex, zwitterionic uracil-guanidine alkaloid recognized by the EPA as a dangerous drinking water contaminant. At present, the ability to detect and quantify the presence of cylindrospermospin in water samples is severely hampered by the lack of an isotopically labeled standard for analytical mass spectrometry. Herein, we present a concise, scaled total synthesis of 15N cylindrospermosin from 15N ammonium chloride, which leverages a unique stereoselective intramolecular double conjugate addition step to assemble the tricyclic guanidine core. In addition to providing the first pure isotopically labeled probe for precise quantification of this potent biotoxin in fresh water sources, our results demonstrate how unique constraints associated with isotope incorporation compel novel solutions to synthesis design.


Assuntos
Cloreto de Amônio/química , Toxinas Bacterianas/síntese química , Cianobactérias/química , Água Doce/análise , Uracila/análogos & derivados , Poluentes Químicos da Água/análise , Alcaloides , Toxinas Bacterianas/química , Toxinas de Cianobactérias , Monitoramento Ambiental , Estrutura Molecular , Isótopos de Nitrogênio , Uracila/síntese química , Uracila/química
10.
Environ Sci Technol ; 52(12): 7092-7100, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29792813

RESUMO

Excess copper may disturb plant photosynthesis and induce leaf senescence. The underlying toxicity mechanism is not well understood. Here, 3-week-old cucumber plants were foliar exposed to different copper concentrations (10, 100, and 500 mg/L) for a final dose of 0.21, 2.1, and 10 mg/plant, using CuSO4 as the Cu ion source for 7 days, three times per day. Metabolomics quantified 149 primary and 79 secondary metabolites. A number of intermediates of the tricarboxylic acid (TCA) cycle were significantly down-regulated 1.4-2.4 fold, indicating a perturbed carbohydrate metabolism. Ascorbate and aldarate metabolism and shikimate-phenylpropanoid biosynthesis (antioxidant and defense related pathways) were perturbed by excess copper. These metabolic responses occur even at the lowest copper dose considered although no phenotype changes were observed at this dose. High copper dose resulted in a 2-fold increase in phytol, a degradation product of chlorophyll. Polyphenol metabolomics revealed that some flavonoids were down-regulated, while the nonflavonoid 4-hydroxycinnamic acid and trans-2-hydroxycinnamic acid were significantly up-regulated 4- and 26-fold compared to the control. This study enhances current understanding of copper toxicity to plants and demonstrates that metabolomics profiling provides a more comprehensive view of plant responses to stressors, which can be applied to other plant species and contaminants.


Assuntos
Cucumis sativus , Antioxidantes , Cobre , Metabolômica , Folhas de Planta
11.
Environ Sci Technol ; 51(17): 9774-9783, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28771344

RESUMO

Due to the potential for interactions between crop plants and engineered nanomaterials (ENMs), there is increasing interest in understanding the bioavailability and effects of ENMs released into soil systems. Here, we investigate the influence of root exudates on the fate of ENMs from a thermodynamic perspective. Nano isothermal titration calorimetry was applied to determine thermodynamic parameters for the interaction between nanocopper (nCu) and synthetic root exudate (SRE) and its components (including sugars, organic acids, amino acids, and phenolic acids), as well as Cu2+ and SRE. The measured binding constant (Kd = 5.645 × 103 M-1) indicated strong interactions between nCu particles and SRE, as well as with individual organic acids. The interaction between Cu2+ and SRE was stronger (Kd = 7.181 × 104 M-1) but varies for the individual SRE components. nCu dissolution in the presence of SRE was the predominant interaction. In addition, SRE resulted in a complex transformation of nCu, where Cu2+, Cu+, and Cu0 were formed via oxidation and reduction. Plant-nCu exposure experiments indicate that the binding of SRE with nCu and dissolved Cu ions can significantly decrease Cu uptake and bioaccumulation in plants. nITC provides a fundamental thermodynamic understanding of interactions between nCu and plant root exudates, providing an important tool for understanding plant NP-interactions.


Assuntos
Cobre , Nanoestruturas , Poluentes do Solo , Disponibilidade Biológica , Raízes de Plantas , Solo
12.
Environ Sci Technol ; 51(18): 10777-10785, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28809480

RESUMO

The number of chemicals in the market is rapidly increasing, while our understanding of the life-cycle impacts of these chemicals lags considerably. To address this, we developed deep artificial neural network (ANN) models to estimate life-cycle impacts of chemicals. Using molecular structure information, we trained multilayer ANNs for life-cycle impacts of chemicals using six impact categories, including cumulative energy demand, global warming (IPCC 2007), acidification (TRACI), human health (Impact2000+), ecosystem quality (Impact2000+), and eco-indicator 99 (I,I, total). The application domain (AD) of the model was estimated for each impact category within which the model exhibits higher reliability. We also tested three approaches for selecting molecular descriptors and identified the principal component analysis (PCA) as the best approach. The predictions for acidification, human health, and the eco-indicator 99 model showed relatively higher performance with R2 values of 0.73, 0.71, and 0.87, respectively, while the global warming model had a lower R2 of 0.48. This study indicates that ANN models can serve as an initial screening tool for estimating life-cycle impacts of chemicals for certain impact categories in the absence of more reliable information. Our analysis also highlights the importance of understanding ADs for interpreting the ANN results.


Assuntos
Aquecimento Global , Redes Neurais de Computação , Animais , Ecossistema , Poluentes Ambientais , Humanos , Análise de Componente Principal , Reprodutibilidade dos Testes
13.
Environ Sci Technol ; 51(17): 10184-10194, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28738142

RESUMO

While the use of nanopesticides in modern agriculture continues to increase, their effects on crop plants are still poorly understood. Here, 4 week old spinach plants grown in an artificial medium were exposed via foliar spray to Cu(OH)2 nanopesticide (0.18 and 18 mg/plant) or Cu ions (0.15 and 15 mg/plant) for 7 days. A gas chromatography-time-of-flight-mass spectrometry metabolomics approach was applied to assess metabolic alterations induced by Cu(OH)2 nanopesticide in spinach leaves. Exposure to Cu(OH)2 nanopesticide and copper ions induced alterations in the metabolite profiles of spinach leaves. Compared to the control, exposure to 18 mg of Cu(OH)2 nanopesticide induced significant reduction (29-85%) in antioxidant or defense-associated metabolites including ascorbic acid, α-tocopherol, threonic acid, ß-sitosterol, 4-hydroxybutyric acid, ferulic acid, and total phenolics. The metabolic pathway for ascorbate and aldarate was disturbed in all exposed spinach plants (nanopesticide and Cu2+). Cu2+ is responsible for the reduction in antioxidants and perturbation of the ascorbate and aldarate metabolism. However, nitrogen metabolism perturbation was nanopesticide-specific. Spinach biomass and photosynthetic pigments were not altered, indicating that metabolomics can be a rapid and sensitive tool for the detection og earlier nanopesticide effects. Consumption of antioxidants during the antioxidant defense process resulted in reduction of the nutritional value of exposed spinach.


Assuntos
Antioxidantes/farmacologia , Cobre/farmacologia , Hidróxidos/farmacologia , Metabolômica , Spinacia oleracea , Folhas de Planta
14.
Environ Sci Technol ; 51(10): 5541-5551, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28443660

RESUMO

We developed a dynamic multimedia fate and transport model (nanoFate) to predict the time-dependent accumulation of metallic engineered nanomaterials (ENMs) across environmental media. nanoFate considers a wider range of processes and environmental subcompartments than most previous models and considers ENM releases to compartments (e.g., urban, agriculture) in a manner that reflects their different patterns of use and disposal. As an example, we simulated ten years of release of nano CeO2, CuO, TiO2, and ZnO in the San Francisco Bay area. Results show that even soluble metal oxide ENMs may accumulate as nanoparticles in the environment in sufficient concentrations to exceed the minimum toxic threshold in freshwater and some soils, though this is more likely with high-production ENMs such as TiO2 and ZnO. Fluctuations in weather and release scenario may lead to circumstances where predicted ENM concentrations approach acute toxic concentrations. The fate of these ENMs is to mostly remain either aggregated or dissolved in agricultural lands receiving biosolids and in freshwater or marine sediments. Comparison to previous studies indicates the importance of some key model aspects including climatic and temporal variations, how ENMs may be released into the environment, and the effect of compartment composition on predicted concentrations.


Assuntos
Nanopartículas Metálicas/toxicidade , Nanoestruturas/toxicidade , Risco , Agricultura , Meio Ambiente , Água Doce , Sedimentos Geológicos , São Francisco , Água do Mar , Solo
15.
Environ Sci Technol ; 51(21): 12424-12433, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29022708

RESUMO

Most existing life-cycle release models for engineered nanomaterials (ENM) are static, ignoring the dynamics of stock and flows of ENMs. Our model, nanoRelease, estimates the annual releases of ENMs from manufacturing, use, and disposal of a product explicitly taking stock and flow dynamics into account. Given the variabilities in key parameters (e.g., service life of products and annual release rate during use) nanoRelease is designed as a stochastic model. We apply nanoRelease to three ENMs (TiO2, SiO2 and FeOx) used in paints and coatings through seven product applications, including construction and building, household and furniture, and automotive for the period from 2000 to 2020 using production volume and market projection information. We also consider model uncertainties using Monte Carlo simulation. Compared with 2016, the total annual releases of ENMs in 2020 will increase by 34-40%, and the stock will increase by 28-34%. The fraction of the end-of-life release among total release flows will increase from 11% in 2002 to 43% in 2020. As compared to static models, our dynamic model predicts about an order of magnitude lower values for the amount of ENM released from this sector in the near-term while stock continues to build up in the system.


Assuntos
Poluentes Ambientais , Nanoestruturas , Dióxido de Silício , Pintura , Fenômenos Físicos
16.
Environ Sci Technol ; 50(22): 12258-12265, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27766831

RESUMO

The implications of engineered nanomaterials (ENMs) in the environment are often investigated using pristine particles. However, there are several biogenic and geogenic materials in natural waters that interact with and modify the surface of ENMs, thereby influencing their fate and effects. Here we studied the influence of soluble extracellular polymeric substances (sEPS) produced by freshwater and marine algae on the surface properties and fate of three commercial TiO2 nanoparticles (nTiO2) with different coatings. Adsorption of sEPS by the various nTiO2 is dependent on particle surface area, intrinsic nTiO2 surface charge, and hydrophobicity. Interactions between sEPS and nTiO2 were driven by electrostatic interactions and chemical bonding (bridge-coordination) between the COO- group of sEPS and nTiO2. Charge reversal of positively charged nTiO2 was observed at pH 7 in the presence of 0.5 mg-C/L sEPS. In addition, the critical coagulation concentration (CCC) of nTiO2 increased in the presence of sEPS-from both freshwater and marine sources. CCC of all nTiO2 increased as sEPS concentrations increased. This study shows that naturally occurring sEPS can modify the surface properties and fate of nTiO2 in natural waters, and should be accounted for when predicting the fate and effects of engineered nanomaterials in the environment.


Assuntos
Nanopartículas/química , Titânio/química , Adsorção , Polímeros , Eletricidade Estática , Água/química
17.
Environ Sci Technol ; 50(4): 2044-53, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26760055

RESUMO

This project investigates the energy-water usage efficiency of large scale civil infrastructure projects involving the artificial recharge of subsurface groundwater aquifers via the reuse of treated municipal wastewater. A modeling framework is introduced which explores the various ways in which spatially heterogeneous variables such as topography, landuse, and subsurface infiltration capacity combine to determine the physical layout of proposed reuse system components and their associated process energy-water demands. This framework is applied to the planning and evaluation of the energy-water usage efficiency of hypothetical reuse systems in five case study regions within the State of California. Findings from these case study analyses suggest that, in certain geographic contexts, the water requirements attributable to the process energy consumption of a reuse system can exceed the volume of water that it is able to recover by as much as an order of magnitude.


Assuntos
Água Subterrânea , Eliminação de Resíduos Líquidos , California , Fontes Geradoras de Energia , Águas Residuárias , Purificação da Água , Abastecimento de Água
18.
Environ Sci Technol ; 50(17): 9697-707, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27483188

RESUMO

There has been an increasing influx of nanopesticides into agriculture in recent years. Understanding the interaction between nanopesticides and edible plants is crucial in evaluating the potential impact of nanotechnology on the environment and agriculture. Here we exposed lettuce plants to Cu(OH)2 nanopesticides (1050-2100 mg/L) through foliar spray for one month. Inductively coupled plasma-mass spectrometry (ICP-MS) results indicate that 97-99% (1353-2501 mg/kg) of copper was sequestered in the leaves and only a small percentage (1-3%) (17.5-56.9 mg/kg) was translocated to root tissues through phloem loading. Gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) based metabolomics combined with partial least squares-discriminant analysis (PLS-DA) multivariate analysis revealed that Cu(OH)2 nanopesticides altered metabolite levels of lettuce leaves. Tricarboxylic (TCA) cycle and a number of amino acid-related biological pathways were disturbed. Some antioxidant levels (cis-caffeic acid, chlorogenic acid, 3,4-dihydroxycinnamic acid, dehydroascorbic acid) were significantly decreased compared to the control, indicating that oxidative stress and a defense response occurred. Nicotianamine, a copper chelator, increased by 12-27 fold compared to the control, which may represent a detoxification mechanism. The up-regulation of polyamines (spermidine and putrescine) and potassium may mitigate oxidative stress and enhance tolerance. The data presented here provide a molecular-scale perspective on the response of plants to copper nanopesticides.


Assuntos
Lactuca , Metabolômica , Cromatografia Gasosa-Espectrometria de Massas , Estresse Oxidativo , Regulação para Cima
19.
Environ Sci Technol ; 50(11): 5597-605, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27183309

RESUMO

Nanoscale zerovalent iron (nZVI) and its derivatives hold promise for remediation of several pollutants but their environmental implications are not completely clear. In this study, the physicochemical properties and aggregation kinetics of sulfide/silica-modified nZVI (FeSSi) were compared in algal media in which Chlamydomonas reinhardtii had been cultured for 1, 2, or 11 days in order to elicit the effects of organic matter produced by the freshwater algae. Furthermore, transformation of FeSSi particles were investigated in C. reinhardtii cultures in exponential (1-d) and slowing growth (11-d) phases while monitoring the response of algae. We found evidence for steric stabilization of FeSSi by algal organic matter, which led to a decrease in the particles' attachment efficiency. Transformation of FeSSi was slower in 11-d cultures as determined via inductively coupled plasma and X-ray analyses. High concentrations of FeSSi caused a lag in algal growth, and reduction in steady state population size, especially in cultures in exponential phase. The different outcomes are well described by a dynamic model describing algal growth, organic carbon production, and FeSSi transformations. This study shows that feedback from algae may play important roles in the environmental implications of engineered nanomaterials.


Assuntos
Ferro/química , Fitoplâncton , Nanopartículas Metálicas/química , Nanopartículas/química , Sulfetos/química , Poluentes Químicos da Água/química
20.
Environ Sci Technol ; 50(4): 2000-10, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26751164

RESUMO

Because copper nanoparticles are being increasingly used in agriculture as pesticides, it is important to assess their potential implications for agriculture. Concerns have been raised about the bioaccumulation of nano-Cu and their toxicity to crop plants. Here, the response of cucumber plants in hydroponic culture at early development stages to two concentrations of nano-Cu (10 and 20 mg/L) was evaluated by proton nuclear magnetic resonance spectroscopy ((1)H NMR) and gas chromatography-mass spectrometry (GC-MS) based metabolomics. Changes in mineral nutrient metabolism induced by nano-Cu were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Results showed that nano-Cu at both concentrations interferes with the uptake of a number of micro- and macro-nutrients, such as Na, P, S, Mo, Zn, and Fe. Metabolomics data revealed that nano-Cu at both levels triggered significant metabolic changes in cucumber leaves and root exudates. The root exudate metabolic changes revealed an active defense mechanism against nano-Cu stress: up-regulation of amino acids to sequester/exclude Cu/nano-Cu; down-regulation of citric acid to reduce the mobilization of Cu ions; ascorbic acid up-regulation to combat reactive oxygen species; and up-regulation of phenolic compounds to improve antioxidant system. Thus, we demonstrate that nontargeted (1)H NMR and GC-MS based metabolomics can successfully identify physiological responses induced by nanoparticles. Root exudates metabolomics revealed important detoxification mechanisms.


Assuntos
Cobre/toxicidade , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectroscopia de Ressonância Magnética/métodos , Aminoácidos/metabolismo , Cobre/farmacocinética , Inativação Metabólica , Imageamento por Ressonância Magnética , Metabolômica/métodos , Nanopartículas Metálicas/toxicidade , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA