Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(7): e111148, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36843552

RESUMO

Osteoclasts are bone-resorbing polykaryons responsible for skeletal remodeling during health and disease. Coincident with their differentiation from myeloid precursors, osteoclasts undergo extensive transcriptional and metabolic reprogramming in order to acquire the cellular machinery necessary to demineralize bone and digest its interwoven extracellular matrix. While attempting to identify new regulatory molecules critical to bone resorption, we discovered that murine and human osteoclast differentiation is accompanied by the expression of Zeb1, a zinc-finger transcriptional repressor whose role in normal development is most frequently linked to the control of epithelial-mesenchymal programs. However, following targeting, we find that Zeb1 serves as an unexpected regulator of osteoclast energy metabolism. In vivo, Zeb1-null osteoclasts assume a hyperactivated state, markedly decreasing bone density due to excessive resorptive activity. Mechanistically, Zeb1 acts in a rheostat-like fashion to modulate murine and human osteoclast activity by transcriptionally repressing an ATP-buffering enzyme, mitochondrial creatine kinase 1 (MtCK1), thereby controlling the phosphocreatine energy shuttle and mitochondrial respiration. Together, these studies identify a novel Zeb1/MtCK1 axis that exerts metabolic control over bone resorption in vitro and in vivo.


Assuntos
Reabsorção Óssea , Osteoclastos , Camundongos , Animais , Humanos , Osteoclastos/metabolismo , Creatina Quinase Mitocondrial/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Osso e Ossos , Diferenciação Celular , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
2.
Prostate ; 83(13): 1247-1254, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37244751

RESUMO

BACKGROUND: Prostate cancer (PCa) bone metastases have been shown to be more resistant to docetaxel than soft tissue metastases. The proinflammatory chemokine receptor CXCR4 has been shown to confer resistance to docetaxel (DOC) in PCa cells. Balixafortide (BLX) is a protein epitope mimetic inhibitor of CXCR4. Accordingly, we hypothesized that BLX would enhance DOC-mediated antitumor activity in PCa bone metastases. METHODS: PC-3 luciferase-labeled cells were injected into the tibia of mice to model bone metastases. Four treatment groups were created: vehicle, DOC (5 mg/kg), BLX (20 mg/kg), and combo (receiving both DOC and BLX). Mice were injected twice daily subcutaneously with either vehicle or BLX starting on Day 1 and weekly intraperitoneally with DOC starting on Day 1. Tumor burden was measured weekly via bioluminescent imaging. At end of study (29 days), radiographs were taken of the tibiae and blood was collected. Serum levels of TRAcP, IL-2, and IFNγ levels were measured using ELISA. Harvested tibiae were decalcified and stained for Ki67, cleaved caspase-3, and CD34 positive cells or microvessels were quantified. RESULTS: Tumor burden was lower in the combo group compared to the DOC alone group. Treatment with the combination had no impact on the number of mice with osteolytic lesions, however the area of osteolytic lesions was lower in the combo group compared to the vehicle and BLX groups, but not the DOC group. Serum TRAcP levels were lower in the combo compared to vehicle group, but not the other groups. No significant difference in Ki67 staining was found among the groups; whereas, cleaved caspase-3 staining was lowest in the Combo group and highest in the BLX group. The DOC and combo groups had more CD34+ microvessels than the control and BLX groups. There was no difference between the treatment groups for IL-2, but the combo group had increased levels of IFNγ compared to the DOC group. CONCLUSIONS: Our data demonstrate that a combination of BAL and DOC has greater antitumor activity in a model of PCa bone metastases than either drug alone. These data support further evaluation of this combination in metastatic PCa.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Caspase 3 , Modelos Animais de Doenças , Interleucina-2 , Antígeno Ki-67 , Fosfatase Ácida Resistente a Tartarato , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Receptores CXCR4
3.
Curr Osteoporos Rep ; 21(2): 117-127, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36848026

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to summarize the recently published findings regarding the role of epithelial to mesenchymal transition (EMT) in tumor progression, macrophages in the tumor microenvironment, and crosstalk that exists between tumor cells and macrophages. RECENT FINDINGS: EMT is a crucial process in tumor progression. In association with EMT changes, macrophage infiltration of tumors occurs frequently. A large body of evidence demonstrates that various mechanisms of crosstalk exist between macrophages and tumor cells that have undergone EMT resulting in a vicious cycle that promotes tumor invasion and metastasis. Tumor-associated macrophages and tumor cells undergoing EMT provide reciprocal crosstalk which leads to tumor progression. These interactions provide potential targets to exploit for therapy.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Humanos , Neoplasias/patologia , Movimento Celular , Macrófagos , Microambiente Tumoral
4.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35887203

RESUMO

As pancreatic cancer is the third deadliest cancer in the U.S., the ability to study genetic alterations is necessary to provide further insight into potentially targetable regions for cancer treatment. Circulating tumor cells (CTCs) represent an especially aggressive subset of cancer cells, capable of causing metastasis and progressing the disease. Here, we present the Labyrinth-DEPArray pipeline for the isolation and analysis of single CTCs. Established cell lines, patient-derived CTC cell lines and freshly isolated CTCs were recovered and sequenced to reveal single-cell copy number variations (CNVs). The resulting CNV profiles of established cell lines showed concordance with previously reported data and highlight several gains and losses of cancer-related genes such as FGFR3 and GNAS. The novel sequencing of patient-derived CTC cell lines showed gains in chromosome 8q, 10q and 17q across both CTC cell lines. The pipeline was used to process and isolate single cells from a metastatic pancreatic cancer patient revealing a gain of chromosome 1q and a loss of chromosome 5q. Overall, the Labyrinth-DEPArray pipeline offers a validated workflow combining the benefits of antigen-free CTC isolation with single cell genomic analysis.


Assuntos
Células Neoplásicas Circulantes , Neoplasias Pancreáticas , Biomarcadores Tumorais , Variações do Número de Cópias de DNA , Genômica , Humanos , Células Neoplásicas Circulantes/patologia , Neoplasias Pancreáticas/genética , Fluxo de Trabalho , Neoplasias Pancreáticas
5.
Hum Mol Genet ; 28(21): 3569-3583, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504520

RESUMO

Integrating single-cell RNA sequencing (scRNA-seq) data with genotypes obtained from DNA sequencing studies facilitates the detection of functional genetic variants underlying cell type-specific gene expression variation. Unfortunately, most existing scRNA-seq studies do not come with DNA sequencing data; thus, being able to call single nucleotide variants (SNVs) from scRNA-seq data alone can provide crucial and complementary information, detection of functional SNVs, maximizing the potential of existing scRNA-seq studies. Here, we perform extensive analyses to evaluate the utility of two SNV calling pipelines (GATK and Monovar), originally designed for SNV calling in either bulk or single-cell DNA sequencing data. In both pipelines, we examined various parameter settings to determine the accuracy of the final SNV call set and provide practical recommendations for applied analysts. We found that combining all reads from the single cells and following GATK Best Practices resulted in the highest number of SNVs identified with a high concordance. In individual single cells, Monovar resulted in better quality SNVs even though none of the pipelines analyzed is capable of calling a reasonable number of SNVs with high accuracy. In addition, we found that SNV calling quality varies across different functional genomic regions. Our results open doors for novel ways to leverage the use of scRNA-seq for the future investigation of SNV function.


Assuntos
Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Bases de Dados Genéticas , Variação Genética , Humanos , RNA/genética
6.
J Transl Med ; 19(1): 163, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33882954

RESUMO

BACKGROUND: Cigarette smoking constitutes a major lifestyle risk factor for osteoporosis and hip fracture. It is reported to impair the outcome of many clinical procedures, such as wound infection treatment and fracture healing. Importantly, although several studies have already demonstrated the negative correlation between cigarette consume and impaired bone homeostasis, there is still a poor understanding of how does smoking affect bone health, due to the lack of an adequately designed animal model. Our goal was to determine that cigarette smoke exposure impairs the dynamic bone remodeling process through induction of bone resorption and inhibition of bone formation. METHODS: We developed cigarette smoke exposure protocols exposing mice to environmental smoking for 10 days or 3 months to determine acute and chronic smoke exposure effects. We used these models, to demonstrate the effect of smoking exposure on the cellular and molecular changes of bone remodeling and correlate these early alterations with subsequent bone structure changes measured by microCT and pQCT. We examined the bone phenotype alterations in vivo and ex vivo in the acute and chronic smoke exposure mice by measuring bone mineral density and bone histomorphometry. Further, we measured osteoclast and osteoblast differentiation gene expression levels in each group. The function changes of osteoclast or osteoblast were evaluated. RESULTS: Smoke exposure caused a significant imbalance between bone resorption and bone formation. A 10-day exposure to cigarette smoke sufficiently and effectively induced osteoclast activity, leading to the inhibition of osteoblast differentiation, although it did not immediately alter bone structure as demonstrated in mice exposed to smoke for 3 months. Cigarette smoke exposure also induced DNA-binding activity of nuclear factor kappaB (NFκB) in osteoclasts, which subsequently gave rise to changes in bone remodeling-related gene expression. CONCLUSIONS: Our findings suggest that smoke exposure induces RANKL activation-mediated by NFκB, which could be a "smoke sensor" for bone remodeling.


Assuntos
NF-kappa B , Fumar , Animais , Remodelação Óssea , Inflamação , Camundongos , Fumaça , Fumar/efeitos adversos
7.
BMC Cancer ; 21(1): 1316, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34879849

RESUMO

BACKGROUND: Overcoming drug resistance is critical for increasing the survival rate of prostate cancer (PCa). Docetaxel is the first cytotoxic chemotherapeutical approved for treatment of PCa. However, 99% of PCa patients will develop resistance to docetaxel within 3 years. Understanding how resistance arises is important to increasing PCa survival. METHODS: In this study, we modeled docetaxel resistance using two PCa cell lines: DU145 and PC3. Using the Passing Attributes between Networks for Data Assimilation (PANDA) method to model transcription factor (TF) activity networks in both sensitive and resistant variants of the two cell lines. We identified edges and nodes shared by both PCa cell lines that composed a shared TF network that modeled changes which occur during acquisition of docetaxel resistance in PCa. We subjected the shared TF network to connectivity map analysis (CMAP) to identify potential drugs that could disrupt the resistant networks. We validated the candidate drug in combination with docetaxel to treat docetaxel-resistant PCa in both in vitro and in vivo models. RESULTS: In the final shared TF network, 10 TF nodes were identified as the main nodes for the development of docetaxel resistance. CMAP analysis of the shared TF network identified trichostatin A (TSA) as a candidate adjuvant to reverse docetaxel resistance. In cell lines, the addition of TSA to docetaxel enhanced cytotoxicity of docetaxel resistant PCa cells with an associated reduction of the IC50 of docetaxel on the resistant cells. In the PCa mouse model, combination of TSA and docetaxel reduced tumor growth and final weight greater than either drug alone or vehicle. CONCLUSIONS: We identified a shared TF activity network that drives docetaxel resistance in PCa. We also demonstrated a novel combination therapy to overcome this resistance. This study highlights the usage of novel application of single cell RNA-sequencing and subsequent network analyses that can reveal novel insights which have the potential to improve clinical outcomes.


Assuntos
Docetaxel/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Neoplasias da Próstata , Fatores de Transcrição , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , RNA-Seq , Análise de Célula Única , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
FASEB J ; 34(6): 7927-7940, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32314833

RESUMO

Uropathogenic Escherichia coli (UPEC), a leading cause of urinary tract infections, is associated with prostate and bladder cancers. Cytotoxic necrotizing factor 1 (CNF1) is a key UPEC toxin; however, its role in bladder cancer is unknown. In the present study, we found CNF1 induced bladder cancer cells to secrete vascular endothelial growth factor (VEGF) through activating Ras homolog family member C (RhoC), leading to subsequent angiogenesis in the bladder cancer microenvironment. We then investigated that CNF1-mediated RhoC activation modulated the stabilization of hypoxia-inducible factor 1α (HIF1α) to upregulate the VEGF. We demonstrated in vitro that active RhoC increased heat shock factor 1 (HSF1) phosphorylation, which induced the heat shock protein 90α (HSP90α) expression, leading to stabilization of HIF1α. Active RhoC elevated HSP90α, HIF1α, VEGF expression, and angiogenesis in the human bladder cancer xenografts. In addition, HSP90α, HIF1α, and VEGF expression were also found positively correlated with the human bladder cancer development. These results provide a potential mechanism through which UPEC contributes to bladder cancer progression, and may provide potential therapeutic targets for bladder cancer.


Assuntos
Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Neovascularização Patológica/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Bexiga Urinária/metabolismo , Proteína de Ligação a GTP rhoC/metabolismo , Animais , Linhagem Celular , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/microbiologia , Neutrófilos/metabolismo , Microambiente Tumoral/fisiologia , Bexiga Urinária/microbiologia , Neoplasias da Bexiga Urinária/microbiologia , Infecções Urinárias/metabolismo , Infecções Urinárias/microbiologia
9.
Curr Osteoporos Rep ; 19(3): 223-229, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33638774

RESUMO

PURPOSE OF REVIEW: In this review, we describe the biology of extracellular vesicles (EV) and how they contribute to bone-associated cancers. RECENT FINDINGS: Crosstalk between tumor and bone has been demonstrated to promote tumor and metastatic progression. In addition to direct cell-to-cell contact and soluble factors, such as cytokines, EVs mediate crosstalk between tumor and bone. EVs are composed of a heterogenous group of membrane-delineated vesicles of varying size range, mechanisms of formation, and content. These include apoptotic bodies, microvesicles, large oncosomes, and exosomes. EVs derived from primary tumors have been shown to alter bone remodeling and create formation of a pre-metastatic niche that favors development of bone metastasis. Similarly, EVs from marrow stromal cells have been shown to promote tumor progression. Additionally, EVs can act as therapeutic delivery vehicles due to their low immunogenicity and targeting specificity. EVs play critical roles in intercellular communication. Multiple classes of EVs exist based on size on mechanism of formation. In addition to a role in pathophysiology, EVs can be exploited as therapeutic delivery vehicles.


Assuntos
Neoplasias Ósseas/patologia , Vesículas Extracelulares/fisiologia , Neoplasias Ósseas/tratamento farmacológico , Comunicação Celular , Progressão da Doença , Humanos , Transdução de Sinais/fisiologia , Microambiente Tumoral/fisiologia
10.
Opt Lett ; 45(21): 6042-6045, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137064

RESUMO

The diagnosis of aggressive prostate cancer (PCa) has relied on microscopic architectures, namely Gleason patterns, of tissues extracted through core biopsies. Technology capable of assessing the tissue architecture without tissue extraction will reduce the invasiveness of PCa diagnosis and improve diagnostic accuracy by allowing for more sampling locations. Our recently developed photoacoustic spectral analysis (PASA) has achieved quantification of tissue architectural heterogeneity interstitially. Taking advantage of the unique optical absorption of cell nuclei at ultraviolet (UV) wavelengths, this study investigated PASA at 266 nm for quantifying the tissue architecture heterogeneity in prostates. The results have shown significant differences among the normal, early cancer, and late cancer stages in mouse prostates ex vivo and in vivo (n=20, p<0.05). The study with human samples ex vivo has shown a correlation of 0.80 (n=11, p<0.05) between PASA quantification and pathologic diagnosis.


Assuntos
Técnicas Fotoacústicas/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Raios Ultravioleta , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Gradação de Tumores , Estadiamento de Neoplasias
11.
J Cell Biochem ; 120(10): 16946-16955, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31099068

RESUMO

Notch plays a protumorigenic role in many cancers including prostate cancer (PCa). Global notch inhibition of multiple Notch family members using γ-secretase inhibitors has shown efficacy in suppressing PCa growth in murine models. However, global Notch inhibition is associated with marked toxicity due to the widespread function of many different Notch family members in normal cell physiology. Accordingly, in the current study, we explored if specific inhibition of Notch1 would effectively inhibit PCa growth in a murine model. The androgen-dependent VCaP and androgen-independent DU145 cell lines were injected subcutaneously into mice. The mice were treated with either control antibody 1B7.11, anti-Notch1 antibody (OMP-A2G1), docetaxel or the combination of OMP-A2G1 and docetaxel. Tumor growth was measured using calipers. At the end of the study, tumors were assessed for proliferative response, apoptotic response, Notch target gene expression, and DNA damage response (DDR) expression. OMP-A2G1 alone inhibited tumor growth of both PCa cell lines to a greater extent than docetaxel alone. There was no additive or synergistic effect of OMP-A2G1 and docetaxel. The primary toxicity was weight loss that was controlled with dietary supplementation. Proliferation and apoptosis were affected differentially in the two cell lines. OMP-A2G1 increased expression of the DDR gene GADD45α in VCaP cells but downregulated GADD45α in Du145 cells. Taken together, these data show that Notch1 inhibition decreases PCa xenograft growth but does so through different mechanisms in the androgen-dependent VCaP cell line vs the androgen-independent DU145 cell line. These results provide a rationale for further exploration of targeted Notch inhibition for therapy of PCa.


Assuntos
Anticorpos Monoclonais/farmacologia , Dano ao DNA/genética , Reparo do DNA/genética , Neoplasias da Próstata/patologia , Receptor Notch1/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Docetaxel/farmacologia , Humanos , Masculino , Camundongos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptor Notch1/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Carcinog ; 58(10): 1886-1896, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31270884

RESUMO

Notch pathway is a highly conserved cell signaling system that plays very important roles in controlling multiple cell differentiation processes during embryonic and adult life. Multiple lines of evidence support the oncogenic role of Notch signaling in several human solid cancers; however, the pleiotropic effects and molecular mechanisms of Notch signaling inhibition on nasopharyngeal carcinoma (NPC) remain unclear. In this study, we evaluated Notch1 expression in NPC cell lines (CNE1, CNE2, SUNE1, HONE1, and HK1) by real-time quantitative PCR and Western blot analysis, and we found that CNE1 and CNE2 cells expressed a higher level of Notch1 compared with HONE1, SUNE1, and HK1 cells. Then Notch1 expression was specifically knocked down in CNE1 and CNE2 cells by Notch1 short hairpin RNA (shRNA). In Notch1 knockdown cells, cell proliferation, migration, and invasion were significantly inhibited. The epithelial-mesenchymal transition of tumor cells was reversed in Notch1-shRNA-transfected cells, accompanied by epithelioid-like morphology changes, increased protein levels of E-cadherin, and decreased expression of vimentin. In addition, knockdown of Notch1 markedly inhibited the expression of urokinase plasminogen activator (uPA) and its receptor uPAR, and chemokines C-C motif chemokine ligand 2 and C-X-C motif chemokine ligand 16, indicating that these factors are downstream targets of Notch1. Furthermore, deleting uPA expression had similar effects as Notch1. Finally, knockdown of Notch1 significantly diminished CNE1 cell growth in a murine model concomitant with inhibition of cell proliferation and induction of apoptosis. These results suggest that Notch1 may become a novel therapeutic target for the clinical treatment of NPC.


Assuntos
Quimiocina CCL2/genética , Quimiocina CXCL16/genética , Carcinoma Nasofaríngeo/genética , Receptor Notch1/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Animais , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Camundongos , Carcinoma Nasofaríngeo/patologia , Metástase Neoplásica , Proteínas de Neoplasias/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Receptor Notch1/antagonistas & inibidores , Transdução de Sinais
13.
Calcif Tissue Int ; 102(2): 152-162, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29094177

RESUMO

Bone is the most common site of prostate cancer metastasis. Once prostate cancer cells metastasize to bone, the mortality rate of prostate cancer patients increases significantly. Furthermore, bone metastases produce multiple skeletal complications, including bone pain that impairs the patients' quality of life. Effective therapies for bone metastatic disease are underdeveloped with most current therapies being primarily palliative with modest survival benefit. Although the exact mechanisms through which prostate cancer metastasizes to bone are unclear, growing evidence suggests that the bone marrow microenvironment, particularly its hematopoietic activity, is a significant mediator of prostate cancer bone tropism. Moreover, the bone microenvironment may regulate metastatic prostate cancer cells between dormant and proliferative states. In this review, we discuss (1) how prostate cancer cells interact with the bone microenvironment to establish bone metastases and (2) current and future potential treatments for prostate cancer patients with bone metastases.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Próstata/patologia , Microambiente Tumoral , Medula Óssea/metabolismo , Medula Óssea/fisiopatologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/fisiopatologia , Neoplasias Ósseas/terapia , Humanos , Masculino
14.
J Pathol ; 243(2): 208-219, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28707808

RESUMO

Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections and plays a role in prostatic carcinogenesis and prostate cancer (PCa) progression. However, the mechanisms through which UPEC promotes PCa development and progression are unclear. Cytotoxic necrotizing factor 1 (CNF1) is one of the most important UPEC toxins and its role in PCa progression has never been studied. We found that UPEC-secreted CNF1 promoted the migration and invasion of PCa cells and PCa metastasis. In vitro studies showed that CNF1 promotes pro-migratory and pro-invasive activity through entering PCa cells and activating Cdc42, which subsequently induced PAK1 phosphorylation and up-regulation of MMP-9 expression. CNF1 also promoted pulmonary metastasis in a xenograft mouse model through these mechanisms. PAK1 phosphorylation correlated with advanced grades of PCa in human clinical PCa tissues. These results suggest that CNF1 derived from UPEC plays an important role in PCa progression through activating a Cdc42-PAK1 signal axis and up-regulating the expression of MMP-9. Therefore, surveillance for and treatment of cnf1-carrying UPEC strains may diminish PCa progression and thus have an important clinical therapeutic impact. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proteínas de Escherichia coli/fisiologia , Neoplasias da Próstata/etiologia , Animais , Toxinas Bacterianas , Movimento Celular , Progressão da Doença , Xenoenxertos , Humanos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Fosforilação/fisiologia , Neoplasias da Próstata/patologia , Regulação para Cima , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
15.
Breast Cancer Res Treat ; 159(1): 87-95, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27475087

RESUMO

Bone metastases from breast cancer are common, causing significant morbidity. Preclinical data of dasatinib, an oral small molecule inhibitor of multiple oncogenic tyrosine kinases, suggested efficacy in tumor control and palliation of bone metastases in metastatic breast cancer (MBC). This clinical trial aimed to determine whether treatment with either of 2 dose schedules of dasatinib results in a progression-free survival (PFS) >50 % at 24 weeks in bone metastasis predominant MBC, to evaluate the toxicity of the 2 dosing regimens, and explore whether treatment results in decreased serum bone turnover markers and patient-reported "worst pain." Subjects with bone metastasis predominant MBC were randomly assigned to either 100 mg of dasatinib once daily, or 70 mg twice daily, with treatment continued until time of disease progression or intolerable toxicity. Planned accrual was 40 patients in each arm. The primary trial endpoint was PFS, defined as time from registration to progression or death due to any cause. Median PFS for all eligible patients (79) was 12.6 weeks (95 % CI 9.1-16.7). Neither cohort met the threshold for further clinical interest. There were no significant differences in PFS by randomized treatment arm (p = 0.85). Toxicity was similar in both cohorts, with no clear trend in serum biomarkers of bone turnover or patient-reported pain. Dasatinib was ineffective in controlling bone-predominant MBC in a patient population, unselected by molecular markers. Further study of dasatinib in breast cancer should not be pursued unless performed in molecularly determined patient subsets, or rational combinations.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Ósseas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Dasatinibe/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Dasatinibe/uso terapêutico , Intervalo Livre de Doença , Esquema de Medicação , Feminino , Humanos , Pessoa de Meia-Idade , Análise de Sobrevida , Resultado do Tratamento
16.
Int J Urol ; 23(11): 906-915, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27624609

RESUMO

Despite an increasing number of prostate cancer survivors in Japan, the current delivery of prostate cancer survivorship care is insufficient and lacks a multidisciplinary approach. We carried out a study to characterize prostate cancer survivorship care in Japan, examine the Japanese workforce available to deliver survivorship care, introduce a conceptual framework for survivorship and identify opportunities to improve Japanese survivorship care. We systematically searched PubMed for prostate cancer survivorship care studies, including those from Japan. We also searched the internet for prostate cancer guidelines relevant to survivorship care. We found 392 articles, of which 71 were relevant, read in detail and reported here. In Japan, survivorship care is mostly provided by urologists. Primary care as a specialty does not exist in Japan, and there are no independent nurse practitioners or physician assistants to assist with survivorship care. Japanese quality of life studies characterize the long-term effects of prostate cancer treatment, but routine use of patient-reported outcomes is not common in Japan. In the USA, in light of a growing comprehensive awareness of challenges facing survivors and their providers, the American Cancer Society prostate cancer survivorship care guidelines serve as a tool for optimizing the management of long-term treatment effects and coordination of care. In order to deliver high-quality survivorship care in Japan, urologists need to establish collaborations with other disciplines within the delivery system. A multidisciplinary guideline for prostate cancer survivorship care in Japan appears warranted.


Assuntos
Neoplasias da Próstata/terapia , Sobrevivência , Atenção à Saúde , Humanos , Japão , Masculino , Qualidade de Vida , Sobreviventes
17.
J Biol Chem ; 289(35): 24560-72, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25006249

RESUMO

Tumor cells secrete factors that modulate macrophage activation and polarization into M2 type tumor-associated macrophages, which promote tumor growth, progression, and metastasis. The mechanisms that mediate this polarization are not clear. Macrophages are phagocytic cells that participate in the clearance of apoptotic cells, a process known as efferocytosis. Milk fat globule- EGF factor 8 (MFG-E8) is a bridge protein that facilitates efferocytosis and is associated with suppression of proinflammatory responses. This study investigated the hypothesis that MFG-E8-mediated efferocytosis promotes M2 polarization. Tissue and serum exosomes from prostate cancer patients presented higher levels of MFG-E8 compared with controls, a novel finding in human prostate cancer. Coculture of macrophages with apoptotic cancer cells increased efferocytosis, elevated MFG-E8 protein expression levels, and induced macrophage polarization into an alternatively activated M2 phenotype. Administration of antibody against MFG-E8 significantly attenuated the increase in M2 polarization. Inhibition of STAT3 phosphorylation using the inhibitor Stattic decreased efferocytosis and M2 macrophage polarization in vitro, with a correlating increase in SOCS3 protein expression. Moreover, MFG-E8 knockdown tumor cells cultured with wild-type or MFG-E8-deficient macrophages resulted in increased SOCS3 expression with decreased STAT3 activation. This suggests that SOCS3 and phospho-STAT3 act in an inversely dependent manner when stimulated by MFG-E8 and efferocytosis. These results uncover a unique role of efferocytosis via MFG-E8 as a mechanism for macrophage polarization into tumor-promoting M2 cells.


Assuntos
Antígenos de Superfície/fisiologia , Macrófagos/imunologia , Neoplasias da Próstata/patologia , Animais , Linhagem Celular Tumoral , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Leite , Neoplasias da Próstata/imunologia , Reação em Cadeia da Polimerase em Tempo Real
18.
Prostate ; 75(3): 292-302, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25327941

RESUMO

BACKGROUND: Raf kinase inhibitor protein (RKIP) has been shown to act as a metastasis suppressor gene in multiple models of cancer. Loss of RKIP expression promotes invasion and metastasis in cell transplantation animal models. However, it is unknown if RKIP expression can impact the progression of cancer in an autochthonous model of cancer. The goal of this study was to determine if loss of RKIP expression in a genetic mouse model of prostate cancer (PCa) impacts metastasis. METHODS: Endogenous RKIP expression was measured in the primary tumors and metastases of transgenic adenocarcinoma of the mouse prostate (TRAMP(+) ) mice. RKIP knockout mice (RKIP(-/-) ) were crossbred with (TRAMP(+) ) mice to create RKIP(-/-) TRAMP(+) mice. Mice were euthanized at 10, 20, and 30 weeks for evaluation of primary and metastatic tumor development. To determine if loss of RKIP alone promotes metastasis, RKIP was knocked down in the low metastatic LNCaP prostate cancer cell line. RESULTS: Endogenous RKIP expression decreased in TRAMP(+) mice as tumors progressed. Primary tumors developed earlier in RKIP(-/-) TRAMP(+) compared to TRAMP(+) mice. At 30 weeks of age, distant metastases were identified only the RKIP(-/-) TRAMP(+) mice. While prostate epithelial cell proliferation rates were higher at 10 and 20 weeks in RKIP(-/-) TRAMP(+) compared to TRAMP(+) mice, by 30 weeks there was no difference. Apoptosis rates in both groups were similar at all timepoints. Decreased RKIP expression did not impact the metastatic rate of LNCaP in an orthotopic PCa model. CONCLUSIONS: These results demonstrate that loss of RKIP decreases latency of tumor development and promotes distant metastasis in the TRAMP mouse model in the context of a pro-metastatic background; but loss of RKIP alone is insufficient to promote metastasis. These findings suggest that in addition to its known metastasis suppressor activity, RKIP may promote tumor progression through enhancing tumor initiation. Prostate 75:292-302, 2015. © 2014 Wiley Periodicals, Inc.


Assuntos
Adenocarcinoma/patologia , Carcinogênese/patologia , Metástase Neoplásica/patologia , Proteína de Ligação a Fosfatidiletanolamina/genética , Neoplasias da Próstata/patologia , Adenocarcinoma/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Humanos , Masculino , Camundongos , Camundongos Knockout , Metástase Neoplásica/genética , Neoplasias da Próstata/genética
19.
Chin J Cancer ; 34(12): 554-62, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26369691

RESUMO

Wnt3a, one of Wnt family members, plays key roles in regulating pleiotropic cellular functions, including self-renewal, proliferation, differentiation, and motility. Accumulating evidence has suggested that Wnt3a promotes or suppresses tumor progression via the canonical Wnt signaling pathway depending on cancer type. In addition, the roles of Wnt3a signaling can be inhibited by multiple proteins or chemicals. Herein, we summarize the latest findings on Wnt3a as an important therapeutic target in cancer.


Assuntos
Neoplasias/metabolismo , Proteína Wnt3A/fisiologia , Divisão Celular/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/fisiologia , Neoplasias/genética , Neoplasias/patologia , Células Tumorais Cultivadas , Via de Sinalização Wnt/fisiologia , Proteína Wnt3A/metabolismo
20.
J Cell Biochem ; 115(8): 1420-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24700678

RESUMO

Osteosarcoma (OSA) is the most common primary bone tumor in humans. However, the cell of origin of OSA is not clearly defined although there is evidence that osteoblasts may serve as OSA progenitors. The role of osteocytes, terminally differentiated osteoblasts, as OSA progenitors has yet to be described. Analysis of patient cDNA from publicly available microarray data revealed that patients with OSA have increased expression of dentin matrix phosphoprotein 1 (DMP1), a marker of osteocytes. Analysis of multiple murine, human, and canine OSA cell lines revealed DMP1 expression. To test the tumorigenic potential of osteocytes, MLO-Y4, a SV-40 immortalized murine osteocyte cell line, was injected into subcutaneous and orthotopic (intratibial) sites of mice. Tumor growth occurred in both locations. Orthotopic MLO-Y4 tumors produced mixed osteoblastic/osteolytic radiographic lesions; a hallmark of OSA. Together, these data demonstrate for the first time that osteocytes can serve as OSA progenitors.


Assuntos
Neoplasias Ósseas/metabolismo , Proteínas da Matriz Extracelular/biossíntese , Osteossarcoma/metabolismo , Fosfoproteínas/biossíntese , Animais , Neoplasias Ósseas/etiologia , Neoplasias Ósseas/patologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Cães , Proteínas da Matriz Extracelular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteócitos/metabolismo , Osteócitos/patologia , Osteossarcoma/etiologia , Osteossarcoma/patologia , Fosfoproteínas/genética , Células-Tronco/metabolismo , Células-Tronco/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA