Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943349

RESUMO

TMPyP is a porphyrin capable of DNA binding and used in photodynamic therapy and G-quadruplex stabilization. Despite its broad applications, TMPyP's effect on DNA nanomechanics is unknown. Here we investigated, by manipulating λ-phage DNA with optical tweezers combined with microfluidics in equilibrium and perturbation kinetic experiments, how TMPyP influences DNA nanomechanics across wide ranges of TMPyP concentration (5-5120 nM), mechanical force (0-100 pN), NaCl concentration (0.01-1 M) and pulling rate (0.2-20 µm/s). Complex responses were recorded, for the analysis of which we introduced a simple mathematical model. TMPyP binding, which is a highly dynamic process, leads to dsDNA lengthening and softening. dsDNA stability increased at low (<10 nM) TMPyP concentrations, then decreased progressively upon increasing TMPyP concentration. Overstretch cooperativity decreased, due most likely to mechanical roadblocks of ssDNA-bound TMPyP. TMPyP binding increased ssDNA's contour length. The addition of NaCl at high (1 M) concentration competed with the TMPyP-evoked nanomechanical changes. Because the largest amplitude of the changes is induced by the pharmacologically relevant TMPyP concentration range, this porphyrin derivative may be used to tune DNA's structure and properties, hence control the wide array of biomolecular DNA-dependent processes including replication, transcription, condensation and repair.

2.
Platelets ; 35(1): 2298341, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38186228

RESUMO

In contrast to red blood cells, platelets float rather than sediment when a column of blood is placed in the gravitational field. By the analogy of erythrocyte sedimentation (ESR), it can be expressed with the platelet antisedimentation rate (PAR), which quantitates the difference in platelet count between the upper and lower halves of the blood column after 1 h of 1 g sedimentation. Venous blood samples from 21 healthy subjects were analyzed for PAR. After a 1-h sedimentation, the upper and lower fractions of blood samples were analyzed for platelet count, mean platelet volume (MPV), immature platelet fraction (IPF), and high-fluorescence IPF (H-IPF). The mechanisms behind platelet flotation were explored by further partitioning of the blood column, time-dependent measurements of platelet count and comparison with ESR. The structure and function of the platelets were assessed by electron microscopy (EM) and atomic force microscopy (AFM), and platelet aggregometry, respectively. Platelet antisedimentation is driven by density differences and facilitated by a size-exclusion mechanism caused by progressive erythrocyte sedimentation. The area under the curve (AUC) of the whole blood adenosine diphosphate (ADP) aggregation curves showed significant differences between the upper and lower samples (p < .005). AUC in the upper samples of 38% of healthy subjects exceeded the top of the normal range (53-122) suggesting that ascending platelets show an intensified ADP-induced aggregability ex vivo. H-IPF was significantly higher in the upper samples (p < .05). EM and AFM revealed that platelets in the upper samples were larger in volume and contained 1.6 times more alpha granules compared to platelets in the lower samples. Our results indicate that antisedimentation is able to differentiate platelet populations based on their structural and functional properties. Therefore, PAR may be a suitable laboratory parameter in various thromboinflammatory disorders.


It is less known that platelets do not sediment in response to gravitational force but float on the top of the blood column. This phenomenon is called antisedimentation, the rate of which, however, can be different, yet this feature has not been widely studied and used in clinical practice or diagnosis. We tested the idea that antisedimentation of platelets from venous blood samples can be a potential biomarker. We have found that platelet antisedimentation is driven by density differences and facilitated by a size-exclusion mechanism caused by progressive erythrocyte sedimentation and after 1-h upper and lower fractions develop. Interestingly, the aggregation curves showed significant differences between the upper and lower samples, suggesting that the ascending platelets show ex vivo hyperaggregability. Electron and atomic force microscopy revealed that platelets in the upper samples were larger in volume and contained more alpha granules than platelets in the lower samples. Subsequently, antisedimentation can be used to differentiate platelet populations based on their structural and functional properties; thus, it may be a promising biomarker for various thromboinflammatory disorders.


Assuntos
Plaquetas , Eritrócitos , Humanos , Contagem de Plaquetas , Volume Plaquetário Médio , Difosfato de Adenosina
3.
FASEB J ; 36(9): e22478, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35916021

RESUMO

The dynamics of the actin cytoskeleton and its connection to endothelial cell-cell junctions determine the barrier function of endothelial cells. The proper regulation of barrier opening/closing is necessary for the normal function of vessels, and its dysregulation can result in chronic and acute inflammation leading to edema formation. By using atomic force microscopy, we show here that thrombin-induced permeability of human umbilical vein endothelial cells, associated with actin stress fiber formation, stiffens the cell center. The depletion of the MEK/ERK kinase BRAF reduces thrombin-induced permeability prevents stress fiber formation and cell stiffening. The peripheral actin ring becomes stabilized by phosphorylated myosin light chain, while cofilin is excluded from the cell periphery. All these changes can be reverted by the inhibition of ROCK, but not of the MEK/ERK module. We propose that the balance between the binding of cofilin and myosin to F-actin in the cell periphery, which is regulated by the activity of ROCK, determines the local dynamics of actin reorganization, ultimately driving or preventing stress fiber formation.


Assuntos
Actinas , Proteínas Proto-Oncogênicas B-raf , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Cadeias Leves de Miosina/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas B-raf/metabolismo , Trombina/metabolismo
4.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108724

RESUMO

Fibrillin-1 microfibrils are essential elements of the extracellular matrix serving as a scaffold for the deposition of elastin and endowing connective tissues with tensile strength and elasticity. Mutations in the fibrillin-1 gene (FBN1) are linked to Marfan syndrome (MFS), a systemic connective tissue disorder that, besides other heterogeneous symptoms, usually manifests in life-threatening aortic complications. The aortic involvement may be explained by a dysregulation of microfibrillar function and, conceivably, alterations in the microfibrils' supramolecular structure. Here, we present a nanoscale structural characterization of fibrillin-1 microfibrils isolated from two human aortic samples with different FBN1 gene mutations by using atomic force microscopy, and their comparison with microfibrillar assemblies purified from four non-MFS human aortic samples. Fibrillin-1 microfibrils displayed a characteristic "beads-on-a-string" appearance. The microfibrillar assemblies were investigated for bead geometry (height, length, and width), interbead region height, and periodicity. MFS fibrillin-1 microfibrils had a slightly higher mean bead height, but the bead length and width, as well as the interbead height, were significantly smaller in the MFS group. The mean periodicity varied around 50-52 nm among samples. The data suggest an overall thinner and presumably more frail structure for the MFS fibrillin-1 microfibrils, which may play a role in the development of MFS-related aortic symptomatology.


Assuntos
Síndrome de Marfan , Microfibrilas , Humanos , Fibrilina-1/genética , Fibrilinas , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/química , Síndrome de Marfan/genética , Aorta , Fibrilina-2
5.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674570

RESUMO

A giant multidomain protein of striated and smooth vertebrate muscles, titin, consists of tandems of immunoglobulin (Ig)- and fibronectin type III (FnIII)-like domains representing ß-sandwiches, as well as of disordered segments. Chicken smooth muscles express several titin isoforms of ~500-1500 kDa. Using various structural-analysis methods, we investigated in vitro nonspecific amyloid aggregation of the high-molecular-weight isoform of chicken smooth-muscle titin (SMTHMW, ~1500 kDa). As confirmed by X-ray diffraction analysis, under near-physiological conditions, the protein formed amorphous amyloid aggregates with a quaternary cross-ß structure within a relatively short time (~60 min). As shown by circular dichroism and Fourier-transform infrared spectroscopy, the quaternary cross-ß structure-unlike other amyloidogenic proteins-formed without changes in the SMTHMW secondary structure. SMTHMW aggregates partially disaggregated upon increasing the ionic strength above the physiological level. Based on the data obtained, it is not the complete protein but its particular domains/segments that are likely involved in the formation of intermolecular interactions during SMTHMW amyloid aggregation. The discovered properties of titin position this protein as an object of interest for studying amyloid aggregation in vitro and expanding our views of the fundamentals of amyloidogenesis.


Assuntos
Amiloide , Proteínas Aviárias , Galinhas , Conectina , Músculo Liso , Animais , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Galinhas/metabolismo , Conectina/metabolismo , Músculo Liso/metabolismo , Proteínas Aviárias/metabolismo
6.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446784

RESUMO

Knowledge of the physical and chemical properties of phospholipids, such as phase transition temperatures (Tc), is of great importance in order to reveal the functionalities of biological and artificial membranes. Our research group developed an oscillatory rheological method for the simple and rapid determination of phase transition temperatures (Tc). The phospholipids constructing the membranes undergo conformational changes at their Tc, which cause alterations of viscoelastic properties of the molecules. The oscillatory technique recommended by us proved to be appropriate to reveal the altered molecular properties of phospholipids as tracking the slightest changes in the viscoelasticity. Our study demonstrates the abrupt changes in rheological properties at Tc for the following phospholipids: 1,2-Dimyristoyl-sn-glycero-3-Phosphocholine (DMPC), 1,2-Dipalmitoyl-sn-glycero-3-Phosphatidylcholine (DPPC), and 1,2-Distearoyl-sn-glycero-3-Phosphocholine (DSPC), proving that the applied methodology is adequate for determining the Tc of phospholipids.


Assuntos
Bicamadas Lipídicas , Fosfolipídeos , Fosfolipídeos/química , Temperatura de Transição , Bicamadas Lipídicas/química , Temperatura , Transição de Fase , 1,2-Dipalmitoilfosfatidilcolina/química
7.
Nano Lett ; 21(6): 2675-2680, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33474931

RESUMO

SARS-CoV-2, the virus responsible for the current COVID-19 pandemic, displays a corona-shaped layer of spikes which play a fundamental role in the infection process. Recent structural data suggest that the spikes possess orientational freedom and the ribonucleoproteins segregate into basketlike structures. How these structural features regulate the dynamic and mechanical behavior of the native virion are yet unknown. By imaging and mechanically manipulating individual, native SARS-CoV-2 virions with atomic force microscopy, here, we show that their surface displays a dynamic brush owing to the flexibility and rapid motion of the spikes. The virions are highly compliant and able to recover from drastic mechanical perturbations. Their global structure is remarkably temperature resistant, but the virion surface becomes progressively denuded of spikes upon thermal exposure. The dynamics and the mechanics of SARS-CoV-2 are likely to affect its stability and interactions.


Assuntos
COVID-19/virologia , SARS-CoV-2/química , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/fisiologia , Vírion/química , Vírion/fisiologia , Fenômenos Biomecânicos , Temperatura Alta , Humanos , Microscopia de Força Atômica , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia , Pandemias , Conformação Proteica , Estabilidade Proteica , SARS-CoV-2/ultraestrutura , Imagem Individual de Molécula , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Termodinâmica , Vírion/ultraestrutura
8.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36232552

RESUMO

T7 phages are E. coli-infecting viruses that find and invade their target with high specificity and efficiency. The exact molecular mechanisms of the T7 infection cycle are yet unclear. As the infection involves mechanical events, single-particle methods are to be employed to alleviate the problems of ensemble averaging. Here we used TIRF microscopy to uncover the spatial dynamics of the target recognition and binding by individual T7 phage particles. In the initial phase, T7 virions bound reversibly to the bacterial membrane via two-dimensional diffusive exploration. Stable bacteriophage anchoring was achieved by tail-fiber complex to receptor binding which could be observed in detail by atomic force microscopy (AFM) under aqueous buffer conditions. The six anchored fibers of a given T7 phage-displayed isotropic spatial orientation. The viral infection led to the onset of an irreversible structural program in the host which occurred in three distinct steps. First, bacterial cell surface roughness, as monitored by AFM, increased progressively. Second, membrane blebs formed on the minute time scale (average ~5 min) as observed by phase-contrast microscopy. Finally, the host cell was lysed in a violent and explosive process that was followed by the quick release and dispersion of the phage progeny. DNA ejection from T7 could be evoked in vitro by photothermal excitation, which revealed that genome release is mechanically controlled to prevent premature delivery of host-lysis genes. The single-particle approach employed here thus provided an unprecedented insight into the details of the complete viral cycle.


Assuntos
Bacteriófagos , Escherichia coli , Bacteriófago T7/genética , Bacteriófagos/genética , DNA Viral/genética , Escherichia coli/metabolismo , Vírion/metabolismo
9.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445693

RESUMO

Mechanical forces acting on cell-cell adhesion modulate the barrier function of endothelial cells. The actively remodeled actin cytoskeleton impinges on cell-cell adhesion to counteract external forces. We applied stress on endothelial monolayers by mechanical stretch to uncover the role of BRAF in the stress-induced response. Control cells responded to external forces by organizing and stabilizing actin cables in the stretched cell junctions. This was accompanied by an increase in intercellular gap formation, which was prevented in BRAF knockdown monolayers. In the absence of BRAF, there was excess stress fiber formation due to the enhanced reorganization of actin fibers. Our findings suggest that stretch-induced intercellular gap formation, leading to a decrease in barrier function of blood vessels, can be reverted by BRAF RNAi. This is important when the endothelium experiences changes in external stresses caused by high blood pressure, leading to edema, or by immune or cancer cells in inflammation or metastasis.


Assuntos
Células Endoteliais/metabolismo , Junções Comunicantes/fisiologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Actinas/fisiologia , Adesão Celular/fisiologia , Células Cultivadas , Citoesqueleto/fisiologia , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Humanos , Junções Intercelulares/fisiologia , Fenômenos Mecânicos , Proteínas Proto-Oncogênicas B-raf/fisiologia
10.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681770

RESUMO

Long-term exercise induces physiological cardiac adaptation, a condition referred to as athlete's heart. Exercise tolerance is known to be associated with decreased cardiac passive stiffness. Passive stiffness of the heart muscle is determined by the giant elastic protein titin. The adult cardiac muscle contains two titin isoforms: the more compliant N2BA and the stiffer N2B. Titin-based passive stiffness may be controlled by altering the expression of the different isoforms or via post-translational modifications such as phosphorylation. Currently, there is very limited knowledge about titin's role in cardiac adaptation during long-term exercise. Our aim was to determine the N2BA/N2B ratio and post-translational phosphorylation of titin in the left ventricle and to correlate the changes with the structure and transverse stiffness of cardiac sarcomeres in a rat model of an athlete's heart. The athlete's heart was induced by a 12-week-long swim-based training. In the exercised myocardium the N2BA/N2B ratio was significantly increased, Ser11878 of the PEVK domain was hypophosphorlyated, and the sarcomeric transverse elastic modulus was reduced. Thus, the reduced passive stiffness in the athlete's heart is likely caused by a shift towards the expression of the longer cardiac titin isoform and a phosphorylation-induced softening of the PEVK domain which is manifested in a mechanical rearrangement locally, within the cardiac sarcomere.


Assuntos
Cardiomegalia Induzida por Exercícios/genética , Conectina/genética , Miofibrilas/metabolismo , Adaptação Fisiológica/fisiologia , Animais , Conectina/química , Conectina/metabolismo , Modelos Animais de Doenças , Módulo de Elasticidade/fisiologia , Coração/fisiologia , Masculino , Contração Miocárdica/genética , Miocárdio/metabolismo , Miocárdio/patologia , Miofibrilas/patologia , Miofibrilas/fisiologia , Condicionamento Físico Animal/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Wistar , Sarcômeros/patologia , Sarcômeros/fisiologia
11.
J Muscle Res Cell Motil ; 41(1): 3-9, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31093826

RESUMO

Actin is among the most highly abundant and ubiquitous proteins in eukaryotic cells. The structure, dynamics and functional diversity of actin have continued to mesmerise cell and molecular biologists, biophysicists and physiologists for more than three quarters of a century. The discovery and initial characterization of actin, which took place in the laboratory of Albert Szent-Györgyi by Ilona Banga and Brúnó F. Straub during the second world war in Hungary, is a remarkable and inspiring moment in the history of science. Many of the early thoughts and ideas on the properties and functions of actin and particularly actomyosin, which are referred to in this short historical overview, resonate freshly even today.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Humanos
12.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30089696

RESUMO

Viruses are nanoscale infectious agents which may be inactivated by heat treatment. The global molecular mechanisms of virus inactivation and the thermally induced structural changes in viruses are not fully understood. In this study, we measured the heat-induced changes in the properties of T7 bacteriophage particles exposed to a two-stage (65°C and 80°C) thermal effect, by using atomic force microscopy (AFM)-based nanomechanical and topographical measurements. We found that exposure to 65°C led to the release of genomic DNA and to the loss of the capsid tail; hence, the T7 particles became destabilized. Further heating to 80°C surprisingly led to an increase in mechanical stability, due likely to partial denaturation of the capsomeric proteins kept within the global capsid arrangement.IMPORTANCE Even though the loss of DNA, caused by heat treatment, destabilizes the T7 phage, its capsid is remarkably able to withstand high temperatures with a more or less intact global topographical structure. Thus, partial denaturation within the global structural constraints of the viral capsid may have a stabilizing effect. Understanding the structural design of viruses may help in constructing artificial nanocapsules for the packaging and delivery of materials under harsh environmental conditions.


Assuntos
Bacteriófago T7/efeitos da radiação , Temperatura Alta , Inativação de Vírus/efeitos da radiação , Bacteriófago T7/ultraestrutura , Microscopia de Força Atômica , Desnaturação Proteica
13.
Biophys J ; 115(5): 874-880, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30126614

RESUMO

The living cell is characterized by a myriad of parallel intracellular transport processes. Simultaneously capturing their global features across multiple temporal and spatial scales is a nearly unsurmountable task. Here we present a method that enables the microscopic imaging of the entire spectrum of intracellular transport on a broad time scale without the need for prior labeling. We show that from the time-dependent fluctuation of pixel intensity, in either bright-field or phase-contrast microscopic images, a scaling factor can be derived that reflects the local Hurst coefficient (H), the value of which reveals the microscopic mechanisms of intracellular motion. The Hurst coefficient image of the interphase cell displays an unexpected, overwhelming superdiffusion (H > 0.5) in the cytoplasm and subdiffusion (H < 0.5) in the nucleus, and provides unprecedented sensitivity in detecting transport processes associated with the living state.


Assuntos
Microscopia , Transporte Biológico , Sobrevivência Celular , Células Hep G2 , Humanos , Processamento de Imagem Assistida por Computador , Espaço Intracelular/metabolismo
14.
J Struct Biol ; 203(3): 273-280, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859328

RESUMO

Fibrin plays a fundamentally important role during hemostasis. To withstand the shear forces of blood flow and prevent embolisation, fibrin monomers form a three-dimensional polymer network that serves as an elastic scaffold for the blood clot. The complex spatial hierarchy of the fibrin meshwork, however, severely complicates the exploration of structural features, mechanical properties and molecular changes associated with the individual fibers of the clot. Here we developed a quasi-two-dimensional nanoscale fibrin matrix that enables the investigation of fibrin properties by topographical analysis using atomic force microscopy. The average thickness of the matrix was ∼50 nm, and structural features of component fibers were accessible. The matrix could be lysed with plasmin following rehydration. By following the topology of the matrix during lysis, we were able to uncover the molecular mechanisms of the process. Fibers became flexible but retained axial continuity for an extended time period, indicating that lateral interactions between protofibrils are disrupted first, but the axial interactions remain stable. Nearby fibers often fused into bundles, pointing at the presence of a cohesional force between them. Axial fiber fragmentation rapidly took place in the final step. Conceivably, the persisting axial integrity and cohesion of the fibrils assist to maintain global clot structure, to prevent microembolism, and to generate a high local plasmin concentration for the rapid, final axial fibril fragmentation. The nanoscale fibrin matrix developed and tested here provides a unique insight into the molecular mechanisms behind the structural and mechanical features of fibrin and its proteolytic degradation.


Assuntos
Produtos de Degradação da Fibrina e do Fibrinogênio/ultraestrutura , Fibrina/ultraestrutura , Fibrinolisina/química , Fibrina/química , Produtos de Degradação da Fibrina e do Fibrinogênio/química , Fibrinólise/genética , Hemostasia , Humanos , Microscopia de Força Atômica , Proteólise , Fluxo Sanguíneo Regional
15.
J Struct Biol ; 203(1): 46-53, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29738832

RESUMO

Titin is a giant protein spanning between the Z- and M-lines of the sarcomere. In the A-band titin is associated with the myosin thick filament. It has been speculated that titin may serve as a blueprint for thick-filament formation due to the super-repeat structure of its A-band domains. Accordingly, titin might provide a template that determines the length and structural periodicity of the thick filament. Here we tested the titin ruler hypothesis by mixing titin and myosin at in situ stoichiometric ratios (300 myosins per 12 titins) in buffers of different ionic strength (KCl concentration range 100-300 mM). The topology of the filamentous complexes was investigated with atomic force microscopy. We found that the samples contained distinct, segregated populations of titin molecules and myosin thick filaments. We were unable to identify complexes in which myosin molecules were regularly associated to either mono- or oligomeric titin in either relaxed or stretched states of the titin filaments. Thus, the electrostatically driven self-association is stronger in both myosin and titin than their binding to each other, and it is unlikely that titin functions as a geometrical template for thick-filament formation. However, when allowed to equilibrate configurationally, long myosin thick filaments appeared with titin oligomers attached to their surface. The titin meshwork formed on the thick-filament surface may play a role in controlling thick-filament length by regulating the structural dynamics of myosin molecules and placing a mechanical limit on the filament length.


Assuntos
Conectina/química , Miosinas/química , Animais , Microscopia de Força Atômica , Coelhos
16.
Mol Pharm ; 15(9): 4214-4225, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30024759

RESUMO

The electrospun nanofiber-based orally dissolving webs are promising candidates for rapid drug release, which is due to the high surface area to volume ratio of the fibers and the high amorphization efficacy of the fiber formation process. Although the latter is responsible for the physical and/or chemical instability of these systems. The primary aim of the present study was to elucidate how the addition of polysorbate 80 (PS80) and hydroxypropyl-ß-cyclodextrin (HP-ß-CD) influenced the electrospinning process, the properties, and the behavior of the obtained nanofibers. In order to reveal any subtle changes attributable to the applied excipients, the prepared samples were subjected to several state of the art imaging and solid state characterization techniques at both macroscopic and microscopic levels. Atomic force microscopy (AFM) revealed the viscoelastic nature of the fibrous samples. At relatively low forces mostly elastic deformation was observed, while at higher loads plasticity predominated. The use of polysorbate led to about two times stiffer, less plastic fibers than the addition of cyclodextrin. The 1H-13C nuclear magnetic resonance (NMR) cross-polarization build-up curves pointed out that cyclodextrin acts as an inner, while polysorbate acts as an outer plasticizer and, due to its "liquid-like" behavior, can migrate in the polymer-matrix, which results in the less plastic behavior of this formulation. Positron annihilation lifetime spectroscopy (PALS) measurements also confirmed the enhanced mobility of the polysorbate and the molecular packing enhancer properties of the cyclodextrin. Solid-state methods suggested amorphous precipitation of the active ingredient in the course of the electrospinning process; furthermore, the nature of the amorphous systems was verified by NMR spectroscopy, which revealed that the use of the examined additives enabled the development of a molecularly dispersed systems of different homogeneities. An accelerated stability study was carried out to track physical state related changes of the incorporated drug and the polymeric carrier. Recrystallization of the active ingredient could not be observed, which indicated a large stress tolerance capacity, but time-dependent microstructural changes were seen in the presence of polysorbate. Raman mapping verified homogeneous drug distribution in the nanofibrous orally dissolving webs. The performed dissolution study indicated that the drug dissolution from the fibers was rapid and complete, but the formed stronger interaction in the case of the PVA-CD-MH system resulted in a little bit slower drug release, compared to the PS80 containing formulation. The results obviously show that the complex physicochemical characterization of the polymer-based fibrous delivery systems is of great impact since it enables the better understanding of material properties including the supramolecular interactions of multicomponent systems and consequently the rational design of drug-loaded nanocarriers of required stability.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Sistemas de Liberação de Medicamentos/métodos , Excipientes/química , Nanofibras/química , Espectroscopia de Ressonância Magnética , Metoclopramida/química , Microscopia de Força Atômica , Polissorbatos/química
18.
Biophys J ; 112(3): 512-522, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28109529

RESUMO

Cytosine methylation is a key mechanism of epigenetic regulation. CpG-dense loci, called "CpG islands", play a particularly important role in modulating gene expression. Methylation has long been suspected to alter the physical properties of DNA, but the full spectrum of the evoked changes is unknown. Here we measured the methylation-induced nanomechanical changes in a DNA molecule with the sequence of a CpG island. For the molecule under tension, contour length, bending rigidity and intrinsic stiffness decreased in hypermethylated dsDNA, pointing at structural compaction which may facilitate DNA packaging in vivo. Intriguingly, increased forces were required to convert hypermethylated dsDNA into an extended S-form configuration. The reduction of force hysteresis during mechanical relaxation indicated that methylation generates a barrier against strand unpeeling and melting-bubble formation. The high structural stability is likely to have significant consequences on the recognition, replication, transcription, and reparation of hypermethylated genetic regions.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Fenômenos Mecânicos , Nanotecnologia , Pinças Ópticas , Sequência de Bases , Fenômenos Biomecânicos
19.
J Cell Sci ; 128(2): 219-24, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25413344

RESUMO

A fundamental requirement of cells is their ability to transduce and interpret their mechanical environment. This ability contributes to regulation of growth, differentiation and adaptation in many cell types. The intermediate filament (IF) system not only provides passive structural support to the cell, but recent evidence points to IF involvement in active biological processes such as signaling, mechanotransduction and gene regulation. However, the mechanisms that underlie these processes are not well known. Skeletal muscle cells provide a convenient system to understand IF function because the major muscle-specific IF, desmin, is expressed in high abundance and is highly organized. Here, we show that desmin plays both structural and regulatory roles in muscle cells by demonstrating that desmin is required for the maintenance of myofibrillar alignment, nuclear deformation, stress production and JNK-mediated stress sensing. Finite element modeling of the muscle IF system suggests that desmin immediately below the sarcolemma is the most functionally significant. This demonstration of biomechanical integration by the desmin IF system suggests that it plays an active biological role in muscle in addition to its accepted structural role.


Assuntos
Desmina/metabolismo , Filamentos Intermediários/metabolismo , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Animais , Desmina/genética , Humanos , Filamentos Intermediários/ultraestrutura , Mecanotransdução Celular/genética , Camundongos Knockout , Músculo Esquelético/ultraestrutura , Miofibrilas/ultraestrutura , Sarcolema/genética , Sarcolema/metabolismo , Estresse Mecânico
20.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(9): 991-1000, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28645851

RESUMO

Nanotubes (NTs) are thin, long membranous structures forming novel, yet poorly known communication pathways between various cell types. Key mechanisms controlling their growth still remained poorly understood. Since NT-forming capacity of immature and mature B cells was found largely different, we investigated how lipid composition and molecular order of the membrane affect NT-formation. Screening B cell lines with various differentiation stages revealed that NT-growth linearly correlates with membrane ganglioside levels, while it shows maximum as a function of cholesterol level. NT-growth of B lymphocytes is promoted by raftophilic phosphatidylcholine and sphingomyelin species, various glycosphingolipids, and docosahexaenoic acid-containing inner leaflet lipids, through supporting membrane curvature, as demonstrated by comparative lipidomic analysis of mature versus immature B cell membranes. Targeted modification of membrane cholesterol and sphingolipid levels altered NT-forming capacity confirming these findings, and also highlighted that the actual lipid raft number may control NT-growth via defining the number of membrane-F-actin coupling sites. Atomic force microscopic mechano-manipulation experiments further proved that mechanical properties (elasticity or bending stiffness) of B cell NTs also depend on the actual membrane lipid composition. Data presented here highlight importance of the lipid side in controlling intercellular, nanotubular, regulatory communications in the immune system.


Assuntos
Linfócitos B/metabolismo , Diferenciação Celular/fisiologia , Microdomínios da Membrana/fisiologia , Esfingolipídeos/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Colesterol/metabolismo , Gangliosídeos/metabolismo , Glicoesfingolipídeos/metabolismo , Fluidez de Membrana/fisiologia , Microdomínios da Membrana/metabolismo , Camundongos , Nanotubos , Fosfatidilcolinas/metabolismo , Esfingomielinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA