RESUMO
An innovative granular sludge deammonification system was incorporated into a conventional-activated sludge process. The process incorporated an internal baffle in the bioreactor for continuous separation of granular biomass from flocculent biomass, which allowed for controlling the solids retention time of flocculent sludge. The process was evaluated for ammonium removal from municipal digested sludge dewatering centrate under various operating conditions lasting over 450 days. The process successfully removed, on average, 90% of the ammonium from centrate at various ammonium loading reaching 1.4 kg/m³d at 20 hours hydraulic retention time. Controlling the retention time of the flocculent biomass and maintaining low nitrite concentration were both found to be effective for nitrite oxidizing bacteria management, resulting in a low nitrate concentration (below 50 mg/L) over a wide range of flocculent biomass concentration in the bioreactor.
Assuntos
Compostos de Amônio/química , Reatores Biológicos , Nitrogênio/química , Esgotos/química , Bactérias/classificação , Bactérias/metabolismo , Biomassa , Floculação , Nitratos , Nitritos , Eliminação de Resíduos Líquidos/métodos , Águas ResiduáriasRESUMO
A membrane enhanced biological phosphorus removal (MEBPR) process was studied to determine the impact of hydraulic retention time (HRT) and solids retention time (SRT) on the removal of chemical oxygen demand (COD), nitrogen, and phosphorus from municipal wastewater. The MEBPR process was capable of delivering complete nitrification independent of the prevailing operating conditions, whereas a significant improvement in COD removal efficiency was observed at longer SRTs. In the absence of carbon-limiting conditions, the MEBPR process was able to achieve low phosphorus concentrations in the effluent at increasingly higher hydraulic loads, with the lowest HRT being 5 hours. The MEBPR process was also able to maintain optimal phosphorus removal when the SRT was increased from 12 to 20 days. However, at higher suspended solids concentrations, a substantial increase was observed in carbon utilization per unit mass of phosphorus removed from the influent. These results offer critical insights to the application of membrane technology for biological nutrient removal systems.
Assuntos
Reatores Biológicos , Fósforo/metabolismo , Purificação da Água/métodos , Carbono/metabolismo , Nitrogênio/metabolismo , Oxigênio/metabolismoRESUMO
A membrane-enhanced biological phosphorus removal (MEBPR) process was operated in parallel with a conventional EBPR (CEBPR) process under challenging operating conditions to uncover fundamental differences in their ability to remove chemical oxygen demand (COD), nitrogen (N), and phosphorus (P) from municipal wastewater. Both systems exhibited the same potential to achieve excellent soluble-P removal when a favorable COD to P ratio was maintained in the influent. The MEBPR train generated a superior effluent quality when measured as total P. The CEBPR effluent contained significantly lower levels of nitrates due to the extra denitrification occurring in the sludge blanket of the secondary clarifier. The observed sludge yield in the MEBPR system was estimated to be between 0.23 and 0.28 g VSS/g COD, and this was 15% lower than the CEBPR sludge yield. When the influent volatile fatty acids (VFAs) became limiting, the CEBPR train exhibited better performance in the removal of soluble-P, due to the higher observed sludge yield and an overall greater denitrification activity that led to a more efficient use of VFAs in the anaerobic zone. After experiencing a severe deterioration of the biological P activity in both processes, the MEBPR train exhibited faster recovery than the CEBPR side. In this experimental work, it was demonstrated that an MEBPR process can sustain long-term satisfactory bio-P performance at HRTs as low as 7 h. However, the lower sludge yield and the reduced denitrification capacity are two important factors that impact the design of high rate membrane-assisted biological nutrient removal (BNR) processes.