Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 19(1): 51, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596905

RESUMO

Programmable nano-bio interfaces driven by tuneable vertically configured nanostructures have recently emerged as a powerful tool for cellular manipulations and interrogations. Such interfaces have strong potential for ground-breaking advances, particularly in cellular nanobiotechnology and mechanobiology. However, the opaque nature of many nanostructured surfaces makes non-destructive, live-cell characterization of cellular behavior on vertically aligned nanostructures challenging to observe. Here, a new nanofabrication route is proposed that enables harvesting of vertically aligned silicon (Si) nanowires and their subsequent transfer onto an optically transparent substrate, with high efficiency and without artefacts. We demonstrate the potential of this route for efficient live-cell phase contrast imaging and subsequent characterization of cells growing on vertically aligned Si nanowires. This approach provides the first opportunity to understand dynamic cellular responses to a cell-nanowire interface, and thus has the potential to inform the design of future nanoscale cellular manipulation technologies.


Assuntos
Nanotecnologia/métodos , Nanofios/química , Óptica e Fotônica , Silício/química , Instalação Elétrica , Teste de Materiais , Nanoestruturas/química
2.
Angew Chem Int Ed Engl ; 60(43): 23212-23216, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34415670

RESUMO

Recently described rhizolutin and collinolactone isolated from Streptomyces Gö 40/10 share the same novel carbon scaffold. Analyses by NMR and X-Ray crystallography verify the structure of collinolactone and propose a revision of rhizolutin's stereochemistry. Isotope-labeled precursor feeding shows that collinolactone is biosynthesized via type I polyketide synthase with Baeyer-Villiger oxidation. CRISPR-based genetic strategies led to the identification of the biosynthetic gene cluster and a high-production strain. Chemical semisyntheses yielded collinolactone analogues with inhibitory effects on L929 cell line. Fluorescence microscopy revealed that only particular analogues induce monopolar spindles impairing cell division in mitosis. Inspired by the Alzheimer-protective activity of rhizolutin, we investigated the neuroprotective effects of collinolactone and its analogues on glutamate-sensitive cells (HT22) and indeed, natural collinolactone displays distinct neuroprotection from intracellular oxidative stress.


Assuntos
Diterpenos/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Linhagem Celular , Diterpenos/química , Diterpenos/metabolismo , Camundongos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/metabolismo , Potoroidae , Fuso Acromático/efeitos dos fármacos
3.
Exp Cell Res ; 374(1): 1-11, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30342990

RESUMO

Cell migration is part of many important in vivo biological processes and is influenced by chemical and physical factors such as substrate topography. Although the migratory behavior of different cell types on structured substrates has already been investigated, up to date it is largely unknown if specimen's age affects cell migration on structures. In this work, we investigated age-dependent migratory behavior of human endothelial cells from young (≤ 31 years old) and old (≥ 60 years old) donors on poly(dimethylsiloxane) microstructured substrates consisting of well-defined parallel grooves. We observed a decrease in cell migration velocity in all substrate conditions and in persistence length perpendicular to the grooves in cells from old donors. Nevertheless, in comparison to young cells, old cells exhibited a higher cell directionality along grooves of certain depths and a higher persistence time. We also found a systematic decrease of donor age-dependent responses of cell protrusions in orientation, velocity and length, all of them decreased in old cells. These observations lead us to hypothesize a possible impairment of actin cytoskeleton network and affected actin polymerization and steering systems, caused by aging.


Assuntos
Movimento Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Dimetilpolisiloxanos/farmacologia , Células Endoteliais/citologia , Adulto , Forma Celular/efeitos dos fármacos , Extensões da Superfície Celular/metabolismo , Células Endoteliais/efeitos dos fármacos , Humanos , Pessoa de Meia-Idade
4.
Nano Lett ; 19(4): 2280-2290, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30775927

RESUMO

Cancer cell invasion through physical barriers in the extracellular matrix (ECM) requires a complex synergy of traction force against the ECM, mechanosensitive feedback, and subsequent cytoskeletal rearrangement. PDMS microchannels were used to investigate the transition from mesenchymal to amoeboid invasion in cancer cells. Migration was faster in narrow 3 µm-wide channels than in wider 10 µm channels, even in the absence of cell-binding ECM proteins. Cells permeating narrow channels exhibited blebbing and had smooth leading edge profiles, suggesting an ECM-induced transition from mesenchymal invasion to amoeboid invasion. Live cell labeling revealed a mechanosensing period in which the cell attempts mesenchymal-based migration, reorganizes its cytoskeleton, and proceeds using an amoeboid phenotype. Rho/ROCK (amoeboid) and Rac (mesenchymal) pathway inhibition revealed that amoeboid invasion through confined environments relies on both pathways in a time- and ECM-dependent manner. This demonstrates that cancer cells can dynamically modify their invasion programming to navigate physically confining matrix conditions.


Assuntos
Citoesqueleto/efeitos dos fármacos , Mesoderma/efeitos dos fármacos , Invasividade Neoplásica/genética , Neoplasias/genética , Fenômenos Biomecânicos , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Citoesqueleto/genética , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/genética , Humanos , Mesoderma/patologia , Invasividade Neoplásica/patologia , Neoplasias/patologia , Nylons/química , Nylons/farmacologia
5.
Soft Matter ; 13(30): 5158-5167, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28664962

RESUMO

A wide variety of cell types exhibit substrate topography-based behavior, also known as contact guidance. However, the precise cellular mechanisms underlying this process are still unknown. In this study, we investigated contact guidance by studying the reaction of human endothelial cells (ECs) to well-defined microgroove topographies, both during and after initial cell spreading. As the cytoskeleton plays a major role in cellular adaptation to topographical features, two methods were used to perturb cytoskeletal structures. Inhibition of actomyosin contractility with the chemical inhibitor blebbistatatin demonstrated that initial contact guidance events are independent of traction force generation. However, cell alignment to the grooved substrate was altered at later time points, suggesting an initial 'passive' phase of contact guidance, followed by a contractility-dependent 'active' phase that relies on mechanosensitive feedback. The actin cytoskeleton was also perturbed in an indirect manner by culturing cells upside down, resulting in decreased levels of contact guidance and suggesting that a possible loss of contact between the actin cytoskeleton and the substrate could lead to cytoskeleton impairment. The process of contact guidance at the microscale was found to be primarily lamellipodia driven, as no bias in filopodia extension was observed on micron-scale grooves.

6.
Soft Matter ; 10(37): 7234-46, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25103537

RESUMO

The spreading area of cells has been shown to play a central role in the determination of cell fate and tissue morphogenesis; however, a clear understanding of how spread cell area is determined is still lacking. The observation that cell area and force generally increase with substrate rigidity suggests that cell area is dictated mechanically, by means of a force-balance between the cell and the substrate. A simple mechanical model, corroborated by experimental measurements of cell area and force is presented to analyze the temporal force balance between the cell and the substrate during spreading. The cell is modeled as a thin elastic disc that is actively pulled by lamellipodia protrusions at the cell front. The essential molecular mechanisms of the motor activity at the cell front, including, actin polymerization, adhesion kinetics, and the actin retrograde flow, are accounted for and used to predict the dynamics of cell spreading on elastic substrates; simple, closed-form expressions for the evolution of cell size and force are derived. Time-resolved, traction force microscopy, combined with measurements of cell area are performed to investigate the simultaneous variations of cell size and force. We find that cell area and force increase simultaneously during spreading but the force develops with an apparent delay relative to the increase in cell area. We demonstrate that this may reflect the strain-stiffening property of the cytoskeleton. We further demonstrate that the radial cell force is a concave function of spreading speed and that this may reflect the strengthening of cell-substrate adhesions during spreading.


Assuntos
Movimento Celular , Citoesqueleto/metabolismo , Actinas/química , Animais , Adesão Celular , Linhagem da Célula , Tamanho Celular , Elasticidade , Fibroblastos/metabolismo , Fibronectinas/química , Humanos , Cinética , Ligantes , Modelos Lineares , Camundongos , Microscopia de Força Atômica , Células NIH 3T3 , Pressão , Pseudópodes/química , Artéria Pulmonar/patologia , Estresse Mecânico , Especificidade por Substrato , Fatores de Tempo
7.
iScience ; 27(5): 109746, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38706849

RESUMO

T cell migration plays an essential role in the immune response and T cell-based therapies. It can be modulated by chemical and physical cues such as electric fields (EFs). The mechanisms underlying electrotaxis (cell migration manipulated by EFs) are not fully understood and systematic studies with immune cells are rare. In this in vitro study, we show that direct current EFs with strengths of physiologically occurring EFs (25-200 mV/mm) can guide the migration of primary human CD4+ and CD8+ T cells on 2D substrates toward the anode and in a 3D environment differentially (CD4+ T cells show cathodal and CD8+ T cells show anodal electrotaxis). Overall, we find that EFs present a potent stimulus to direct T cell migration in different microenvironments in a cell-type-, substrate-, and voltage-dependent manner, while not significantly influencing T cell differentiation or viability.

8.
J Biol Chem ; 287(41): 34604-13, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22893698

RESUMO

The continuous assembly and disassembly of focal adhesions is required for efficient cell spreading and migration. The G-protein-coupled receptor kinase-interacting protein 1 (GIT1) is a multidomain protein whose dynamic localization to sites of cytoskeletal remodeling is critically involved in the regulation of these processes. Here we provide evidence that the subcellular localization of GIT1 is regulated by protein kinase D3 (PKD3) through direct phosphorylation on serine 46. GIT1 phosphorylation on serine 46 was abrograted by PKD3 depletion, thereby identifying GIT1 as the first specific substrate for this kinase. A GIT1 S46D phosphomimetic mutant localized to motile, paxillin-positive cytoplasmic complexes, whereas the phosphorylation-deficient GIT1 S46A was enriched in focal adhesions. We propose that phosphorylation of GIT1 on serine 46 by PKD3 represents a molecular switch by which GIT1 localization, paxillin trafficking, and cellular protrusive activity are regulated.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/fisiologia , Citoesqueleto/metabolismo , Paxilina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Substituição de Aminoácidos , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Citoesqueleto/genética , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Paxilina/genética , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/fisiologia , Piruvato Desidrogenase Quinase de Transferência de Acetil , Serina/genética , Serina/metabolismo
9.
Acta Neuropathol ; 123(4): 529-38, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22134538

RESUMO

The contribution of microRNAs to the initiation, progression, and metastasis of medulloblastoma (MB) remains poorly understood. Metastatic dissemination at diagnosis is present in about 30% of MB patients, and is associated with a dismal prognosis. Using microRNA expression profiling, we demonstrate that the retinal miR-183-96-182 cluster on chromosome 7q32 is highly overexpressed in non-sonic hedgehog MBs (non-SHH-MBs). Expression of miR-182 and miR-183 is associated with cerebellar midline localization, and miR-182 is significantly overexpressed in metastatic MB as compared to non-metastatic tumors. Overexpression of miR-182 in non-SHH-MB increases and knockdown of miR-182 decreases cell migration in vitro. Xenografts overexpressing miR-182 invaded adjacent normal tissue and spread to the leptomeninges, phenotypically reminiscent of clinically highly aggressive large cell anaplastic MB. Hence, our study provides strong in vitro and in vivo evidence that miR-182 contributes to leptomeningeal metastatic dissemination in non-SHH-MB. We therefore reason that targeted inhibition of miR-182 may prevent leptomeningeal spread in patients with non-SHH-MB.


Assuntos
Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Meduloblastoma/genética , Meduloblastoma/patologia , Neoplasias Meníngeas/secundário , MicroRNAs/genética , Adolescente , Animais , Ensaios de Migração Celular , Proliferação de Células , Criança , Pré-Escolar , Estudos de Coortes , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas Hedgehog/genética , Humanos , Masculino , Neoplasias Meníngeas/genética , Camundongos , Camundongos SCID , Análise em Microsséries , Transplante Heterólogo/métodos , Células Tumorais Cultivadas , Proteínas Wnt/genética , Adulto Jovem
10.
Sci Rep ; 12(1): 7053, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35488042

RESUMO

Cell migration plays an essential role in wound healing and inflammatory processes inside the human body. Peripheral blood neutrophils, a type of polymorphonuclear leukocyte (PMN), are the first cells to be activated during inflammation and subsequently migrate toward an injured tissue or infection site. This response is dependent on both biochemical signaling and the extracellular environment, one aspect of which includes increased temperature in the tissues surrounding the inflammation site. In our study, we analyzed temperature-dependent neutrophil migration using differentiated HL-60 cells. The migration speed of differentiated HL-60 cells was found to correlate positively with temperature from 30 to 42 °C, with higher temperatures inducing a concomitant increase in cell detachment. The migration persistence time of differentiated HL-60 cells was higher at lower temperatures (30-33 °C), while the migration persistence length stayed constant throughout the temperature range. Coupled with the increased speed observed at high temperatures, this suggests that neutrophils are primed to migrate more effectively at the elevated temperatures characteristic of inflammation. Temperature gradients exist on both cell and tissue scales. Taking this into consideration, we also investigated the ability of differentiated HL-60 cells to sense and react to the presence of temperature gradients, a process known as thermotaxis. Using a two-dimensional temperature gradient chamber with a range of 27-43 °C, we observed a migration bias parallel to the gradient, resulting in both positive and negative thermotaxis. To better mimic the extracellular matrix (ECM) environment in vivo, a three-dimensional collagen temperature gradient chamber was constructed, allowing observation of biased neutrophil-like differentiated HL-60 migration toward the heat source.


Assuntos
Inflamação , Neutrófilos , Movimento Celular , Células HL-60 , Humanos , Temperatura
11.
J Cell Sci ; 122(Pt 20): 3644-51, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19812308

RESUMO

Mechanical forces play a crucial role in controlling the integrity and functionality of cells and tissues. External forces are sensed by cells and translated into signals that induce various responses. To increase the detailed understanding of these processes, we investigated cell migration and dynamic cellular reorganisation of focal adhesions and cytoskeleton upon application of cyclic stretching forces. Of particular interest was the role of microtubules and GTPase activation in the course of mechanotransduction. We showed that focal adhesions and the actin cytoskeleton undergo dramatic reorganisation perpendicular to the direction of stretching forces even without microtubules. Rather, we found that microtubule orientation is controlled by the actin cytoskeleton. Using biochemical assays and fluorescence resonance energy transfer (FRET) measurements, we revealed that Rac1 and Cdc42 activities did not change upon stretching, whereas overall RhoA activity increased dramatically, but independently of intact microtubules. In conclusion, we demonstrated that key players in force-induced cellular reorganisation are focal-adhesion sliding, RhoA activation and the actomyosin machinery. In contrast to the importance of microtubules in migration, the force-induced cellular reorganisation, including focal-adhesion sliding, is independent of a dynamic microtubule network. Consequently, the elementary molecular mechanism of cellular reorganisation during migration is different to the one in force-induced cell reorganisation.


Assuntos
Polaridade Celular , Adesões Focais/enzimologia , Microtúbulos/enzimologia , Estresse Mecânico , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Movimento Celular , Camundongos , Células NIH 3T3 , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores
12.
Small ; 7(10): 1480-7, 2011 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-21538869

RESUMO

Cellular ageing can lead to altered cell mechanical properties and is known to affect many fundamental physiological cell functions. To reveal age-dependent changes in cell mechanical properties and in active mechanoresponses, the stiffness of human fibroblasts from differently aged donors was determined, as well as the cell's reaction to periodic mechanical deformation of the culture substrate, and the two parameters were correlated. A comparison of the average Young's moduli revealed that cells from young donors (<25 years) are considerably stiffer than cells from older donors (>30 years). The reduced stiffness of cells from the older donor group corresponds to the measured decrease of actin in these cells. Remarkably, cells from the older donor group show a significantly faster reorganization response to periodic uniaxial tensile strain than cells from the young donor group. The impact of a reduced amount of actin on cell stiffness and cell reorganization kinetics is further confirmed by experiments where the amount of cellular actin in cells from the young donor group was decreased by transient siRNA knockdown of the actin gene. These cells show a reduced stiffness and enhanced reorganization speed, and in this way mimic the properties and behavior of cells from the older donor group. These results demonstrate that mechanical properties of human fibroblasts depend on the donor's age, which in turn may affect the cells' active responses to mechanical stimulations.


Assuntos
Envelhecimento/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Mecanotransdução Celular , Actinas/metabolismo , Adulto , Fenômenos Biomecânicos/fisiologia , Criança , Elasticidade , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Mecânico , Adulto Jovem
13.
J Funct Biomater ; 11(1)2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183326

RESUMO

Drug-induced liver toxicity is one of the most common reasons for the failure of drugs in clinical trials and frequent withdrawal from the market. Reasons for such failures include the low predictive power of in vivo studies, that is mainly caused by metabolic differences between humans and animals, and intraspecific variances. In addition to factors such as age and genetic background, changes in drug metabolism can also be caused by disease-related changes in the liver. Such metabolic changes have also been observed in clinical settings, for example, in association with a change in liver stiffness, a major characteristic of an altered fibrotic liver. For mimicking these changes in an in vitro model, this study aimed to develop scaffolds that represent the rigidity of healthy and fibrotic liver tissue. We observed that liver cells plated on scaffolds representing the stiffness of healthy livers showed a higher metabolic activity compared to cells plated on stiffer scaffolds. Additionally, we detected a positive effect of a scaffold pre-coated with fetal calf serum (FCS)-containing media. This pre-incubation resulted in increased cell adherence during cell seeding onto the scaffolds. In summary, we developed a scaffold-based 3D model that mimics liver stiffness-dependent changes in drug metabolism that may more easily predict drug interaction in diseased livers.

14.
Bioengineering (Basel) ; 6(3)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394780

RESUMO

Human adipose-derived mesenchymal stem/stromal cells (Ad-MSCs) have great potential for bone tissue engineering. Cryogels, mimicking the three-dimensional structure of spongy bone, represent ideal carriers for these cells. We developed poly(2-hydroxyethyl methacrylate) cryogels, containing hydroxyapatite to mimic inorganic bone matrix. Cryogels were additionally supplemented with different types of proteins, namely collagen (Coll), platelet-rich plasma (PRP), immune cells-conditioned medium (CM), and RGD peptides (RGD). The different protein components did not affect scaffolds' porosity or water-uptake capacity, but altered pore size and stiffness. Stiffness was highest in scaffolds with PRP (82.3 kPa), followed by Coll (55.3 kPa), CM (45.6 kPa), and RGD (32.8 kPa). Scaffolds with PRP, CM, and Coll had the largest pore diameters (~60 µm). Ad-MSCs were osteogenically differentiated on these scaffolds for 14 days. Cell attachment and survival rates were comparable for all four scaffolds. Runx2 and osteocalcin levels only increased in Ad-MSCs on Coll, PRP and CM cryogels. Osterix levels increased slightly in Ad-MSCs differentiated on Coll and PRP cryogels. With differentiation alkaline phosphatase activity decreased under all four conditions. In summary, besides Coll cryogel our PRP cryogel constitutes as an especially suitable carrier for bone tissue engineering. This is of special interest, as this scaffold can be generated with patients' PRP.

15.
Biophys J ; 95(7): 3470-8, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18515393

RESUMO

Cells adherent on a cyclically stretched substrate with a periodically varying uniaxial strain are known to dynamically reorient nearly perpendicular to the strain direction. We investigate the dynamic reorientation of rat embryonic and human fibroblast cells over a range of stretching frequency from 0.0001 to 20 s(-1) and strain amplitude from 1% to 15%. We report quantitative measurements that show that the mean cell orientation changes exponentially with a frequency-dependent characteristic time from 1 to 5 h. At subconfluent cell densities, this characteristic time for reorientation shows two characteristic regimes as a function of frequency. For frequencies below 1 s(-1), the characteristic time decreases with a power law as the frequency increases. For frequencies above 1 s(-1), it saturates at a constant value. In addition, a minimum threshold frequency is found below that no significant cell reorientation occurs. Our results are consistent for the two different fibroblast types and indicate a saturation of molecular mechanisms of mechanotransduction or response machinery for subconfluent cells within the frequency regime under investigation. For confluent cell layers, we observe similar behaviors of reorientation under cyclic stretch but no saturation in the characteristic time with frequency, suggesting that cell-cell contacts can play an important role in the response machinery of cells under mechanical strain.


Assuntos
Fibroblastos/citologia , Animais , Fenômenos Biomecânicos , Linhagem Celular , Humanos , Modelos Lineares , Ratos , Fatores de Tempo
16.
Exp Gerontol ; 103: 35-46, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29269268

RESUMO

Perivascular stromal cells, including mesenchymal stem/stromal cells (MSCs), secrete paracrine factor in response to exercise training that can facilitate improvements in muscle remodeling. This study was designed to test the capacity for muscle-resident MSCs (mMSCs) isolated from young mice to release regenerative proteins in response to mechanical strain in vitro, and subsequently determine the extent to which strain-stimulated mMSCs can enhance skeletal muscle and cognitive performance in a mouse model of uncomplicated aging. Protein arrays confirmed a robust increase in protein release at 24h following an acute bout of mechanical strain in vitro (10%, 1Hz, 5h) compared to non-strain controls. Aged (24month old), C57BL/6 mice were provided bilateral intramuscular injection of saline, non-strain control mMSCs, or mMSCs subjected to a single bout of mechanical strain in vitro (4×104). No significant changes were observed in muscle weight, myofiber size, maximal force, or satellite cell quantity at 1 or 4wks between groups. Peripheral perfusion was significantly increased in muscle at 4wks post-mMSC injection (p<0.05), yet no difference was noted between control and preconditioned mMSCs. Intramuscular injection of preconditioned mMSCs increased the number of new neurons and astrocytes in the dentate gyrus of the hippocampus compared to both control groups (p<0.05), with a trend toward an increase in water maze performance noted (p=0.07). Results from this study demonstrate that acute injection of exogenously stimulated muscle-resident stromal cells do not robustly impact aged muscle structure and function, yet increase the survival of new neurons in the hippocampus.


Assuntos
Envelhecimento/fisiologia , Transplante de Células-Tronco Mesenquimais , Músculo Esquelético/fisiologia , Neurônios/fisiologia , Animais , Feminino , Hipocampo/patologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Condicionamento Físico Animal , Estresse Mecânico
17.
Soft Matter ; 3(3): 307-326, 2007 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32900147

RESUMO

Living cells are complex entities whose remarkable, emergent capacity to sense, integrate, and respond to environmental cues relies on an intricate series of interactions among the cell's macromolecular components. Defects in mechanosensing, transduction,or responses underlie many diseases such as cancers, immune disorders, cardiac hypertrophy, genetic malformations, and neuropathies. Here, we highlight micro- and nanotechnology-based tools that have been used to study how chemical and mechanical cues modulate the responses of single cells in contact with the extracellular environment. Understanding the physical aspects of these complex processes at the micro- and nanometer scale could produce profound and fundamental new insights into how the processes of cell migration, metastasis, immune function and other areas which are regulated by mechanical forces.

18.
Sci Rep ; 7: 45152, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338091

RESUMO

The interactions between a cancer cell and its extracellular matrix (ECM) have been the focus of an increasing amount of investigation. The role of the intermediate filament keratin in cancer has also been coming into focus of late, but more research is needed to understand how this piece fits in the puzzle of cytoskeleton-mediated invasion and metastasis. In Panc-1 invasive pancreatic cancer cells, keratin phosphorylation in conjunction with actin inhibition was found to be sufficient to reduce cell area below either treatment alone. We then analyzed intersecting keratin and actin fibers in the cytoskeleton of cyclically stretched cells and found no directional correlation. The role of keratin organization in Panc-1 cellular morphological adaptation and directed migration was then analyzed by culturing cells on cyclically stretched polydimethylsiloxane (PDMS) substrates, nanoscale grates, and rigid pillars. In general, the reorganization of the keratin cytoskeleton allows the cell to become more 'mobile'- exhibiting faster and more directed migration and orientation in response to external stimuli. By combining keratin network perturbation with a variety of physical ECM signals, we demonstrate the interconnected nature of the architecture inside the cell and the scaffolding outside of it, and highlight the key elements facilitating cancer cell-ECM interactions.


Assuntos
Movimento Celular , Filamentos Intermediários/metabolismo , Linhagem Celular Tumoral , Dimetilpolisiloxanos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Queratinas/metabolismo
19.
Sci Rep ; 7(1): 16611, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192178

RESUMO

Effective restoration of human intervertebral disc degeneration is challenged by numerous limitations of the currently available spinal fusion and arthroplasty treatment strategies. Consequently, use of artificial biomaterial implant is gaining attention as a potential therapeutic strategy. Our study is aimed at investigating and characterizing a novel knitted titanium (Ti6Al4V) implant for the replacement of nucleus pulposus to treat early stages of chronic intervertebral disc degeneration. Specific knitted geometry of the scaffold with a porosity of 67.67 ± 0.824% was used to overcome tissue integration failures. Furthermore, to improve the wear resistance without impairing original mechanical strength, electro-polishing step was employed. Electro-polishing treatment changed a surface roughness from 15.22 ± 3.28 to 4.35 ± 0.87 µm without affecting its wettability which remained at 81.03 ± 8.5°. Subsequently, cellular responses of human mesenchymal stem cells (SCP1 cell line) and human primary chondrocytes were investigated which showed positive responses in terms of adherence and viability. Surface wettability was further enhanced to super hydrophilic nature by oxygen plasma treatment, which eventually caused substantial increase in the proliferation of SCP1 cells and primary chondrocytes. Our study implies that owing to scaffolds physicochemical and biocompatible properties, it could improve the clinical performance of nucleus pulposus replacement.


Assuntos
Disco Intervertebral/patologia , Núcleo Pulposo/patologia , Núcleo Pulposo/transplante , Titânio/química , Ligas , Materiais Biocompatíveis/química , Adesão Celular , Linhagem Celular , Sobrevivência Celular , Fenômenos Químicos , Humanos , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/cirurgia , Teste de Materiais , Fenômenos Mecânicos , Microscopia Eletrônica de Varredura , Núcleo Pulposo/ultraestrutura , Porosidade , Análise Espectral , Alicerces Teciduais/química
20.
Beilstein J Nanotechnol ; 7: 1620-1641, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144512

RESUMO

The extracellular environment of vascular cells in vivo is complex in its chemical composition, physical properties, and architecture. Consequently, it has been a great challenge to study vascular cell responses in vitro, either to understand their interaction with their native environment or to investigate their interaction with artificial structures such as implant surfaces. New procedures and techniques from materials science to fabricate bio-scaffolds and surfaces have enabled novel studies of vascular cell responses under well-defined, controllable culture conditions. These advancements are paving the way for a deeper understanding of vascular cell biology and materials-cell interaction. Here, we review previous work focusing on the interaction of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) with materials having micro- and nanostructured surfaces. We summarize fabrication techniques for surface topographies, materials, geometries, biochemical functionalization, and mechanical properties of such materials. Furthermore, various studies on vascular cell behavior and their biological responses to micro- and nanostructured surfaces are reviewed. Emphasis is given to studies of cell morphology and motility, cell proliferation, the cytoskeleton and cell-matrix adhesions, and signal transduction pathways of vascular cells. We finalize with a short outlook on potential interesting future studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA