Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pharmaceutics ; 12(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066206

RESUMO

The surface of halloysite nanotubes (HNTs) was bifunctionalized with two ligands-folic acid and a fluorochrome. In tandem, this combination should selectively target cancer cells and provide a means for imaging the nanoparticle. Modified bi-functionalized HNTs (bi-HNTs) were then doped with the anti-cancer drug methotrexate. bi-HNTs were characterized and subjected to in vitro tests to assess cellular growth and changes in cellular behavior in three cell lines-colon cancer, osteosarcoma, and a pre-osteoblast cell line (MC3T3-E1). Cell viability, proliferation, and cell uptake efficiency were assessed. The bi-HNTs showed cytocompatibility at a wide range of concentrations. Compared with regular-sized HNTs, reduced HNTs (~6 microns) were taken up by cells in more significant amounts, but increased cytotoxicity lead to apoptosis. Multi-photon images confirmed the intracellular location of bi-HNTs, and the method of cell entry was mainly through caveolae-mediated endocytosis. The bi-HNTs showed a high drug loading efficiency with methotrexate and a prolonged period of release. Most importantly, bi-HNTs were designed as a drug carrier to target cancer cells specifically, and imaging data shows that non-cancerous cells were unaffected after exposure to MTX-doped bi-HNTs. All data provide support for our nanoparticle design as a mechanism to selectively target cancer cells and significantly reduce the side-effects caused by off-targeting of anti-cancer drugs.

2.
Sci Rep ; 9(1): 7946, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138885

RESUMO

Time course, in vivo imaging of brain cells is crucial to fully understand the progression of secondary cellular damage and recovery in murine models of injury. We have combined high-resolution gradient index lens technology with a model of diffuse axonal injury in rodents to enable repeated visualization of fine features of individual cells in three-dimensional space over several weeks. For example, we recorded changes in morphology in the same axons in the external capsule numerous times over 30 to 60 days, before and after induced traumatic brain injury. We observed the expansion of secondary injury and limited recovery of individual axons in this subcortical white matter tract over time. In another application, changes in microglial activation state were visualized in the penumbra region of mice before and after ischemia induced by middle carotid artery occlusion. The ability to collect a series of high-resolution images of cellular features of the same cells pre- and post-injury enables a unique opportunity to study the progression of damage, spontaneous healing, and effects of therapeutics in mouse models of neurodegenerative disease and brain injury.


Assuntos
Axônios/ultraestrutura , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Isquemia Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Artérias Carótidas/diagnóstico por imagem , Neuroimagem/métodos , Animais , Axônios/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Oclusão Coronária/cirurgia , Feminino , Corantes Fluorescentes/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Microscopia de Fluorescência por Excitação Multifotônica , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Neuroimagem/instrumentação , Regeneração/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/lesões , Substância Branca/metabolismo
3.
Brain Struct Funct ; 224(5): 1947-1956, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30903358

RESUMO

Optical imaging of wholemount tissue samples provides greater understanding of structure-function relationships as the architecture of these specimens is generally well preserved. However, difficulties arise when attempting to stitch together images of multiple regions of larger, oddly shaped specimens. These difficulties include (1) maintaining consistent signal-to-noise ratios when the overlying sample surface is uneven, (2) ensuring sample viability when live samples are required, and (3) stabilizing the specimen in a fixed position in a flowing medium without distorting the tissue sample. To address these problems, we designed a simple and cost-efficient device that can be 3D-printed and machined. The design for the device, named the Platform for Planar Imaging of Curved Surfaces (PICS), consists of a sample holder, or "cap" with gaps for fluid flow and a depression for securing the sample in a fixed position without glue or pins, a basket with two arms that move along an external radius to rotate the sample around a central axis, and a customizable platform designed to fit on a commercially available temperature control system for slice electrophysiology. We tested the system using wholemounts of the murine subventricular zone (SVZ), which has a high degree of curvature, to assess sample viability and image quality through cell movement for over an hour for each sample. Using the PICS system, tissues remained viable throughout the imaging sessions, there were no noticeable decreases in the image SNR across an imaging plane, and there was no noticeable displacement of the specimen due to fluid flow.


Assuntos
Encéfalo/diagnóstico por imagem , Ventrículos Laterais/diagnóstico por imagem , Imagem Óptica/instrumentação , Impressão Tridimensional/instrumentação , Animais , Camundongos Transgênicos , Cintilografia/instrumentação , Razão Sinal-Ruído
4.
Front Neurosci ; 10: 169, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199633

RESUMO

High resolution, in vivo optical imaging of the mouse brain over time often requires anesthesia, which necessitates maintaining the animal's body temperature and level of anesthesia, as well as securing the head in an optimal, stable position. Controlling each parameter usually requires using multiple systems. Assembling multiple components into the small space on a standard microscope stage can be difficult and some commercially available parts simply do not fit. Furthermore, it is time-consuming to position an animal in the identical position over multiple imaging sessions for longitudinal studies. This is especially true when using an implanted gradient index (GRIN) lens for deep brain imaging. The multiphoton laser beam must be parallel with the shaft of the lens because even a slight tilt of the lens can degrade image quality. In response to these challenges, we have designed a compact, integrated in vivo imaging support system to overcome the problems created by using separate systems during optical imaging in mice. It is a single platform that provides (1) sturdy head fixation, (2) an integrated gas anesthesia mask, and (3) safe warm water heating. This THREE-IN-ONE (TRIO) Platform has a small footprint and a low profile that positions a mouse's head only 20 mm above the microscope stage. This height is about one half to one third the height of most commercially available immobilization devices. We have successfully employed this system, using isoflurane in over 40 imaging sessions with an average of 2 h per session with no leaks or other malfunctions. Due to its smaller size, the TRIO Platform can be used with a wider range of upright microscopes and stages. Most of the components were designed in SOLIDWORKS® and fabricated using a 3D printer. This additive manufacturing approach also readily permits size modifications for creating systems for other small animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA