Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Transfus Med Hemother ; 40(6): 413-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24474891

RESUMO

OBJECTIVE: Development of cell therapy and advanced therapy medicinal products depends on in vitro expansion of human cells in fetal bovine serum (FBS) supplemented media. Human-derived supplements, such as human serum (huS) and human platelet lysate (hPL), represent suitable alternatives to FBS. Various studies demonstrated that the use of these human alternatives result in comparable or even improved proliferation and expansion ratios. METHODS: Within this study three human supplement alternatives, huS, hPLP (plasma containing hPL) and hPLN (plasma replaced by saline), were compared by 2D gel electrophoresis, an important tool in proteomic analysis. 2D gel electrophoresis allows the determination of the protein number and the detection of protein changes (decreasing/increasing concentration). RESULTS AND CONCLUSION: The comparison of huS, hPLP, and hPLN gels resulted in clearly visible differences in protein pattern, protein number and concentration, particularly when comparing huS with hPL and hPLP with hPLN.

2.
Rapid Commun Mass Spectrom ; 24(6): 761-7, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20169558

RESUMO

Von Willebrand factor (VWF), an adhesive glycoprotein with an approximate molecular weight (MW) of the monomer of 260 kDa, circulates in human blood plasma as a series of multimers ranging in size up to 20.000 kDa; thus the determination of the accurate MW of the monomer is of great importance and due to its high MW quite challenging. In this study accurate MW determination of intact recombinant VWF monomer (rVWF) was performed with GEMMA (gas-phase electrophoretic mobility macromolecular analysis) and MALDI TOF MS (matrix-assisted laser desorption/ionization linear time-of-flight mass spectrometry). Three rVWF preparations with differing buffer systems and glycoprotein concentrations were analyzed. First investigations directed towards heterogeneity determination by means of capillary gel electrophoresis (CGE)-on-the-chip with a laser-induced fluorescence detector revealed two compounds (MW of 277 kDa (migration time 44.3 s) and 341 kDa (migration time 49.5 s)) present in each sample to varying extents, namely mature and pro-rVWF. MALDI MS analysis in the linear positive ion mode allowed the detection of mature rVWF with an exact MW of 256.1 kDa (+/-0.8%) and pro-rVWF with a MW of 349.8 kDa (+/-0.8%). Two samples containing pro-rVWF in very minor concentration resulted in GEMMA detection of the mature rVWF with a MW of 227.4 kDa (+/-2.5%), derived from the measured globular size of 10.9 nm. For one sample containing both rVWF species in almost equal concentrations no differentiation of the two species was possible with GEMMA. Due to its lower resolution only a peak representing a mixture of both species at 11.8 nm could be observed, yielding a MW of 298.8 kDa (+/-1.6%).


Assuntos
Eletroforese em Microchip/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fator de von Willebrand/química , Humanos , Peso Molecular , Proteínas Recombinantes/química
3.
Anal Bioanal Chem ; 395(5): 1373-83, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19727682

RESUMO

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been proved to be a powerful tool for the identification and characterization of microorganisms based on their surface peptide/protein pattern. Because of the complexity of microorganisms, there are no standardized protocols to acquire reproducible peptide/protein profiles for a broad range of microorganisms and for fungi in particular. Small variations during MALDI MS sample preparation affect the quality of mass spectra quite often. In this study, we were aiming to develop a sample preparation method for the analysis of colored, a quite often observed phenomenon, and mycotoxin-producing Fusarium conidia spores using MALDI-TOF MS. Different washing solvent systems for light- and deep-colored (from slightly orange to red-brown) conidia spores and connected sample deposition techniques were evaluated based on MS reproducibility and number and intensities of peaks. As a method of choice for generation of reproducible and characteristic MALDI-TOF mass spectra, the use of a washing process for colored Fusarium conidia spores with acetonitrile/0.5% formic acid (7/3) was found and subsequently combined with two-layer volume technique (spores/matrix (ferulic acid) solution was deposited onto a MALDI target, and after solvent evaporation, a second matrix layer was deposited). With the application of this sample preparation method, for deep-colored Fusarium species, 19 abundant molecular ions in the m/z range 2,000-10,000 were always detected with an S/N ratio of 3:1 or better. Finally this optimized sample preparation for the first time provided mass spectrometric fingerprints of strongly colored Fusarium conidia spores resulting in the possibility of differentiation of such spores at the species level.


Assuntos
Fusarium/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Esporos Fúngicos/química , Cor , Reprodutibilidade dos Testes , Solventes/química
4.
Life Sci Alliance ; 2(4)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31308055

RESUMO

PRDM9 is a trans-acting factor directing meiotic recombination to specific DNA-binding sites by its zinc finger (ZnF) array. It was suggested that PRDM9 is a multimer; however, we do not know the stoichiometry or the components inducing PRDM9 multimerization. In this work, we used in vitro binding studies and characterized with electrophoretic mobility shift assays, mass spectrometry, and fluorescence correlation spectroscopy the stoichiometry of the PRDM9 multimer of two different murine PRDM9 alleles carrying different tags and domains produced with different expression systems. Based on the migration distance of the PRDM9-DNA complex, we show that PRDM9 forms a trimer. Moreover, this stoichiometry is adapted already by the free, soluble protein with little exchange between protein monomers. The variable ZnF array of PRDM9 is sufficient for multimerization, and at least five ZnFs form already a functional trimer. Finally, we also show that only one ZnF array within the PRDM9 oligomer binds to the DNA, whereas the remaining two ZnF arrays likely maintain the trimer by ZnF-ZnF interactions.


Assuntos
DNA/química , DNA/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Sítios de Ligação , Ensaio de Desvio de Mobilidade Eletroforética , Recombinação Homóloga , Espectrometria de Massas , Meiose , Camundongos , Modelos Moleculares , Multimerização Proteica , Solubilidade , Dedos de Zinco
5.
J Pharm Biomed Anal ; 52(4): 432-7, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20138456

RESUMO

One of the most prominent polymer group applied for drug conjugation is poly(ethylene) glycol (PEG). Since drug production is subjected to strict restrictions on the part of the FDA and EMEA, also PEG has to be characterized accurately. Particularly its molecular mass distribution (MMD) and polydispersity can result in unrequested inhomogeneous final products. Therefore evaluation of PEG before applying it to drug conjugation is essential. In this study a new analytical method for size and molecular mass determination based on electrophoretic mobility called GEMMA is used to characterize linear PEGs with two differing terminating functional groups. To confirm the data acquired by GEMMA a second, well-established method for molecular weight determination, MALDI-TOF MS (matrix-assisted laser desorption ionization time-of-flight mass spectrometry), was applied. Utilizing these two analytical approaches four monomethoxylated PEG-succinimidyl succinate (mPEG-SS) derivatives were investigated in terms of polydispersity and MMD. Although based on differing principles, both analytical methods yield comparable results. All obtained MMD maxima for the mPEG-SS batches lie within the company stated specifications, MMD+/-10% (based on MALDI-TOF MS data). For mPEG-SS 2K a polydispersity of 1.02 and for mPEG-SS 5K, 10K and 20K a polydispersity of 1.01 were determined from GEMMA as well as from MALDI-TOF MS data and are in agreement with the company's data (based on GPC data), namely 1.05-1.10.


Assuntos
Polietilenoglicóis/análise , Polietilenoglicóis/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Tecnologia Farmacêutica/métodos , Peso Molecular
6.
J Proteomics ; 72(4): 628-39, 2009 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-19154801

RESUMO

The detection of glycoproteins on SDS-PAGE gels is a very challenging task as glycan moieties can inhibit the protein-dye interaction or protein-silver reaction slowing down or even completely preventing the staining process. Additionally the applied staining procedure can influence the total number of detected peptides after in-gel digestion. Three in SDS-PAGE commonly used staining procedures (silver nitrate, CBB R250 and colloidal CBB G250) were evaluated in terms of duration, sensitivity and obtainable sequence coverage after PMF. The staining procedures were performed with and without the assistance of microwave irradiation. Microwave treatment resulted in comparable band intensities and sensitivities as obtained by the original staining protocols (limit of detection for microwave assisted silver staining: 50 ng), but staining duration was significantly reduced, to 30 min for silver nitrate and to 1.5 h for CBB and cCBB staining method. PMF analysis by MALDI mass spectrometry was not affected by the microwave treatment. It was found that the total number of detected tryptic peptides has increased when applying microwave irradiation during the staining process (average sequence coverage 31-56% and 76% for Avidin).


Assuntos
Glicoproteínas/análise , Micro-Ondas , Coloração e Rotulagem/métodos , Animais , Bovinos , Eletroforese em Gel de Poliacrilamida/métodos , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
7.
Rapid Commun Mass Spectrom ; 23(6): 877-84, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19224532

RESUMO

Unambiguous identification of mycotoxin-producing fungal species as Fusarium is of great relevance to agriculture and the food-producing industry as well as in medicine. Protein profiles of intact fungal spores, such as Penicillium, Aspergillus and Trichoderma, derived from matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) were shown to provide a rapid and straightforward method for species identification and characterization. In this study, we applied this approach to five different Fusarium spp. strains which are known to affect the growth of different grain plants. To obtain a suitable MALDI matrix system and sample preparation method, thin-layer, dried-droplet and sandwich methods and several MALDI matrices, namely CHCA, DHB, FA, SA and THAP dissolved in various solvent mixtures (organic solvents such as ACN, MeOH, EtOH and iPrOH and for the aqueous phase water and 0.1% TFA), were evaluated in terms of mass spectrometric pattern and signal intensities. The most significant peptide/protein profiles were obtained with 10 mg ferulic acid (FA) in 1 mL ACN/0.1% TFA (7:3, v/v) used as matrix system. Mixing the spores with the matrix solution directly on the MALDI target (dried-droplet technique) resulted in an evenly distributed spores/matrix crystal layer, yielding highly reproducible peptide/protein profiles from the spore surfaces. Numerous abundant ions throughout the investigated m/z range (m/z 1500-15 000) could be detected. Differences in the obtained mass spectral patterns allowed the differentiation of spores of various Fusarium species.


Assuntos
Proteínas Fúngicas/análise , Proteínas Fúngicas/química , Fusarium/química , Fusarium/classificação , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Esporos Fúngicos/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA