Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e31976, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38868054

RESUMO

The cowpea aphid (Aphis cracivora) is a cosmopolitan insect pest that causes economic damage on cowpea. Although the pest persists at all the growth stages of the crop, in West Africa, aphids are the only major insect pests that farmers regularly control at the vegetative stage. Thus, deploying aphid-resistant crop varieties can reduce farmers' expenditure on insecticide. The availability of different biotypes of the pest and reports of resistance breakdown necessitates pyramiding of sources of aphid resistance to develop a more robust genotype for durable resistance. Two aphid-resistance genes, sourced from SARC-1-57-2 and IT97K-556-6, were introgressed through gene pyramiding technique into a farmers' preferred cowpea variety, Zaayura, using marker-assisted backcrossing. A simple sequence repeat (SSR) marker, CP 171F/172R, and an allele-specific single nucleotide polymorphism (SNP) marker, 1_0912, were used for foreground selection of the SARC-1-57-2 and IT97K-556-6 aphid resistance genes, respectively. A stepwise backcross approach was used to introgress the major aphid resistance QTL (QAc-vu7.1) from IT97K-556-6 into Zaayura using the marker 1_0912 coupled with intermittent screening under artificial aphid infestation. After the fourth backcross generation, three heterozygous BC4F1 of Zaayura/TT97K-556-6 were intercrossed to Zaayura Pali to develop intercross F1 (ICF1). Three true ICF1 hybrids allowed to self to produce ICF2. Five (5) out of 48 ICF2 plants which were genotyped with the two foreground markers had the two aphid resistance genes fixed in the double homozygous dominant state. For background selection, out of 192 allele-specific markers screened, only 47 polymorphic markers were identified and used for the background analysis of the pyramided lines. The recurrent parent genome recovery ranged from 72 to 93.8 %. ICF2_Zaa/556/SARC-P6 had the highest recurrent parent genome and the least heterozygosity among the five improved lines. The five pyramided lines showed superior resistance under artificial aphid infestation as compared to the two donor parents with damage scores ranging from 2.0 to 2.3. On the field, however, there were no significant differences between the pyramided lines and their recurrent parent for all the agronomic traits measured except for grain yield. The pyramided lines do not only stand the chance of being released as new varieties but are also valuable genetic resources for other breeding programs that seek to improve cowpea for aphid resistance.

2.
Heliyon ; 8(7): e09852, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35847611

RESUMO

Global climate change is expected to further intensify the already harsh conditions in the dry savannah ecological zones of sub-Saharan Africa, posing serious threats to food and income security of millions of smallholder farmers. Breeding cowpea for improved earliness could help minimize this risk, by ensuring that the crops complete their lifecycle before the cessation of rainfall. In this study, we crossed two sets of cowpea lines showing contrasting phenotypes for earliness in terms of days to 50% flowering (DFF). One set of the lines comprised three extra-early parents (viz.: Sanzi-Nya, Tobonaa and CB27, 30-35 DFF), and the other set consisted of three early-to-medium maturity lines (viz.: Kirkhouse-Benga, Wang-Kae and Padi-Tuya, 42-45 DFF). The derived crosses and their parents were evaluated for key earliness-related traits at Nyankpala and Manga sites of CSIR-Savanna Agricultural Research Institute (SARI), Ghana. To unravel the genetic control of measured traits, we compared the appropriateness of Chi-square goodness of fit tests using classical Mendelian ratios, and frequency distribution (histogram)-related statistics such as skewness and kurtosis. The Chi-square test suggested a single dominant gene mode of inheritance for earliness, whereas the quantitative methods implicated duplicate epistasis and complementary epistatic gene actions. Our results show that coercing segregating lines to fit into classical Mendelian ratios to determine the genetic control of earliness could be misleading, due to its subjectivity. Thus, the genetic control of earliness in cowpea is governed by complementary and duplicate epistasis. The most applicable breeding approach for traits influenced by duplicate epitasis is selection of desirable recombinants from segregating populations developed from bi-parental crosses. Complementary epitasis, as found in the Wang-Kae × CB27 cross, could be exploited in developing improved extra-early lines through backcrossing. Heritability and genetic advance estimates were high for days to first flower appearance (DFFA) and days to 95 % pod maturity (DNPM) in the Padi-Tuya × CB27 and Kirkhouse-Benga x CB27 crosses, indicating that breeding for extra-earliness is feasible. CB27 could be a good donor for introgression of earliness into medium to late maturing improved cowpea varieties, because crosses developed from it had high heritability and genetic advance estimates.

3.
Plants (Basel) ; 11(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36145753

RESUMO

Forty common bean accessions of multiple genetic background trait attribution regarding drought tolerance were selected based on mean yield performance from an earlier field test evaluation conducted using augmented RCBD. The various bean genotypes were further evaluated with phosphorus and water treatment interactions at two different levels for each factor. The experiment was conducted in a 2 × 2 × 40 factorial using RCBD with three replications under screen-house conditions at the CSIR-Crops Research Institute, Kumasi-Ghana. The objective was to select drought- and low phosphorus-tolerant common bean genotypes; which are suitable for tropical climatic conditions. The results showed that common bean with drought and heat trait tolerance survived, developed flowers and podded with seeds to physiological maturity, whilst genotypes with no heat trait tolerance had impaired reproductive structural development and growth disruption; thus, flowers could not develop into pods with seeds. This reproductive developmental anomaly was due to prevailing average daytime and nighttime high temperatures of 35.45 °C and 29.95 °C, respectively, recorded during the growth period, which reduced pollen fertility. Among the 478 experimental bean plants (two plants were missing) analyzed, 141 (29.5%) did not flower, 168 (35.18%) had their pods dropped whilst 99 (20.7%) podded with seeds to achieve physiological maturity. The podded-seed bean genotypes were of the SEF-line pedigrees, which were shown to be heat and drought-tolerant. Meanwhile, bean accessions with SMC, SMN and SMR code prefixes did not pod into seed despite possessing drought-tolerant traits. The effects of interactions between phosphorus and water treatments on the root characteristics of drought-tolerant common bean were as follows: root length, root surface area, average root diameter and root volume growth extensions doubled dimensionally under optimum conditions (P2W2) compared to stressed conditions (P1W1). The results from the present study identified four SEF-bean genotypes, namely, SEF15, SEF 47, SEF 60 and SEF 62, as superior yield performers, even under low soil phosphorus and in extreme high temperature conditions. Therefore, breeding for the selection of drought- and low-P-tolerant common bean for tropical agro-ecological environments must also consider concomitant heat stress tolerance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA