Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Evol ; 35(4): 807-822, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29253197

RESUMO

Immense floral trait variation has likely arisen as an adaptation to attract pollinators. Different pollinator syndromes-suites of floral traits that attract specific pollinator functional groups-are repeatedly observed across closely related taxa or divergent populations. The observation of these trait syndromes suggests that pollinators use floral cues to signal the underlying nectar reward, and that complex trait combinations may persist and evolve through genetic correlations. Here, we explore pollinator preferences and the genetic architecture of floral divergence using an extensive genetic mapping study in the hybrid zone of two Ipomopsis aggregata subspecies that exhibit a hummingbird and a hawkmoth pollinator syndrome. We found that natural selection acts on several floral traits, and that hummingbirds and hawkmoths exhibited flower color preferences as predicted by their respective pollinator syndromes. Our quantitative trait loci (QTL) analyses revealed 46 loci affecting floral features, many of which colocalize across the genome. Two of these QTL have large effects explaining >15% of the phenotypic variance. The strongest QTL was associated with flower color and localized to a SNP in the anthocyanin biosynthesis pathway gene, dihydroflavonol-4-reductase (DFR). Further analysis revealed strong associations between DFR SNP variants, gene expression, and flower color across populations from the hybrid zone. Hence, DFR may be a target of pollinator-mediated selection in the hybrid zone of these two subspecies. Together, our findings suggest that hummingbirds and hawkmoths exhibit contrasting flower color preferences, which may drive the divergence of several floral traits through correlated trait evolution.


Assuntos
Antocianinas/biossíntese , Evolução Biológica , Flores/genética , Magnoliopsida/genética , Seleção Genética , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Antocianinas/genética , Cor , Flores/enzimologia , Aptidão Genética , Variação Genética , Hibridização Genética , Magnoliopsida/metabolismo , Pigmentação/genética , Polinização , Locos de Características Quantitativas
2.
PLoS Genet ; 10(6): e1004410, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24967630

RESUMO

Mimulus guttatus and M. nasutus are an evolutionary and ecological model sister species pair differentiated by ecology, mating system, and partial reproductive isolation. Despite extensive research on this system, the history of divergence and differentiation in this sister pair is unclear. We present and analyze a population genomic data set which shows that M. nasutus budded from a central Californian M. guttatus population within the last 200 to 500 thousand years. In this time, the M. nasutus genome has accrued genomic signatures of the transition to predominant selfing, including an elevated proportion of nonsynonymous variants, an accumulation of premature stop codons, and extended levels of linkage disequilibrium. Despite clear biological differentiation, we document genomic signatures of ongoing, bidirectional introgression. We observe a negative relationship between the recombination rate and divergence between M. nasutus and sympatric M. guttatus samples, suggesting that selection acts against M. nasutus ancestry in M. guttatus.


Assuntos
Especiação Genética , Genoma de Planta/genética , Mimulus/classificação , Mimulus/genética , Isolamento Reprodutivo , Fluxo Gênico/genética , Variação Genética , Genética Populacional , Desequilíbrio de Ligação , Fenótipo , Especificidade da Espécie
3.
New Phytol ; 211(1): 319-31, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26924810

RESUMO

In flowering plants, F1 hybrid seed lethality is a common outcome of crosses between closely related diploid species, but the genetic basis of this early-acting and potentially widespread form of postzygotic reproductive isolation is largely unknown. We intercrossed two closely related species of monkeyflower, Mimulus guttatus and Mimulus tilingii, to characterize the mechanisms and strength of postzygotic reproductive isolation. Then, using a reciprocal backcross design, we performed high-resolution genetic mapping to determine the genetic architecture of hybrid seed lethality and directly test for loci with parent-of-origin effects. We found that F1 hybrid seed lethality is an exceptionally strong isolating barrier between Mimulus species, with reciprocal crosses producing < 1% viable seeds. This form of postzygotic reproductive isolation appears to be highly polygenic, indicating that multiple incompatibility loci have accumulated rapidly between these closely related Mimulus species. It is also primarily caused by genetic loci with parent-of-origin effects, suggesting a possible role for imprinted genes in the evolution of Mimulus hybrid seed lethality. Our findings suggest that divergence in loci with parent-of-origin effects, which is probably driven by genomic coevolution within lineages, might be an important source of hybrid incompatibilities between flowering plant species.


Assuntos
Cruzamentos Genéticos , Mimulus/genética , Sementes/fisiologia , Quimera , Melhoramento Vegetal/métodos , Locos de Características Quantitativas , Sementes/genética
4.
Mol Ecol ; 25(11): 2499-517, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27038381

RESUMO

Incompletely isolated species provide an opportunity to investigate the genetic mechanisms and evolutionary forces that maintain distinct species in the face of ongoing gene flow. Here, we use field surveys and reduced representation sequencing to characterize the patterns of reproductive isolation, admixture and genomic divergence between populations of the outcrossing wildflower Mimulus guttatus and selfing M. nasutus. Focusing on a single site where these two species have come into secondary contact, we find that phenological isolation is strong, although incomplete, and is likely driven by divergence in response to photoperiod. In contrast to previous field studies, which have suggested that F1 -hybrid formation might be rare, we discover patterns of genomic variation consistent with ongoing introgression. Strikingly, admixed individuals vary continuously from highly admixed to nearly pure M. guttatus, demonstrating ongoing hybridization and asymmetric introgression from M. nasutus into M. guttatus. Patterns of admixture and divergence across the genome show that levels of introgression are more variable than expected by chance. Some genomic regions show a reduced introgression, including one region that overlaps a critical photoperiod QTL, whereas other regions show elevated levels of interspecific gene flow. In addition, we observe a genome-wide negative relationship between absolute divergence and the local recombination rate, potentially indicating natural selection against M. nasutus ancestry in M. guttatus genetic backgrounds. Together, our results suggest that Mimulus speciation is both ongoing and dynamic and that a combination of divergence in phenology and mating system, as well as selection against interspecific alleles, likely maintains these sympatric species.


Assuntos
Genética Populacional , Hibridização Genética , Mimulus/genética , Isolamento Reprodutivo , Simpatria , DNA de Plantas/genética , Flores/fisiologia , Fluxo Gênico , Especiação Genética , Genoma de Planta , Mimulus/classificação , Fotoperíodo , Locos de Características Quantitativas , Análise de Sequência de DNA
5.
Mol Ecol ; 25(23): 5862-5875, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27392816

RESUMO

Plant-pollinator interactions are thought to be major drivers of floral trait diversity. However, the relative importance of divergent pollinator-mediated selection vs. neutral processes in floral character evolution has rarely been explored. We tested for adaptive floral trait evolution by comparing differentiation at neutral genetic loci to differentiation at quantitative floral traits in a putative Ipomopsis aggregata hybrid zone. Typical I. aggregata subsp. candida displays slender white tubular flowers that are typical of flowers pollinated by hawkmoths, and subsp. collina displays robust red tubular flowers typical of flowers pollinated by hummingbirds; yet, hybrid flower morphs are abundant across the East Slope of the Colorado Rockies. We estimated genetic differentiation (FST ) for nuclear and chloroplast microsatellite loci and used a half-sib design to calculate quantitative trait divergence (QST ) from collection sites across the morphological hybrid zone. We found little evidence for population structure and estimated mean FST to be 0.032. QST values for several floral traits including corolla tube length and width, colour, and nectar volume were large and significantly greater than mean FST . We performed multivariate comparisons of neutral loci to genetic correlations within and between populations and found a strong signal for divergent selection, suggesting that specific combinations of floral display and reward traits may be the targets of selection. Our results show little support for historical subspecies categories, yet floral traits are more diverged than expected due to drift alone. Non-neutral divergence for multivariate quantitative traits suggests that selection by pollinators is maintaining a correlation between display and reward traits.


Assuntos
Adaptação Biológica/genética , Flores/genética , Fluxo Gênico , Magnoliopsida/genética , Seleção Genética , Animais , Colorado , DNA de Cloroplastos/genética , DNA de Plantas/genética , Flores/anatomia & histologia , Genética Populacional , Repetições de Microssatélites , Fenótipo , Polinização
6.
New Phytol ; 201(4): 1498-1507, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24304557

RESUMO

• Divergence in flowering time is a key contributor to reproductive isolation between incipient species, as it enforces habitat specialization and causes assortative mating even in sympatry. Understanding the genetic basis of flowering time divergence illuminates the origins and maintenance of species barriers. • We investigated the genetics of divergence in critical photoperiod for flowering between yellow monkeyflowers Mimulus guttatus (outcrosser, summer flowering) and Mimulus nasutus (selfer, spring flowering). We used quantitative trait locus (QTL) mapping of F2 hybrids and fine-mapping in nearly isogenic lines to characterize the genomic regions underlying a > 2 h critical photoperiod difference between allopatric populations, and then tested whether the same QTLs control flowering time in sympatry. • We identified two major QTLs that almost completely explain M. nasutus's ability to flower in early spring; they are shared by allopatric and sympatric population pairs. The smaller QTL is coincident with one that differentiates ecotypes within M. guttatus, but the larger effect QTL appears unique to M. nasutus. • Unlike floral traits associated with mating system divergence, large interspecific differences in flowering phenology depend on only a few loci. Major critical photoperiod QTLs may be 'speciation genes' and also restrict interspecific gene flow in secondary sympatry.


Assuntos
Cruzamentos Genéticos , Flores/genética , Flores/fisiologia , Variação Genética , Fotoperíodo , Locos de Características Quantitativas/genética , Segregação de Cromossomos/genética , Estudos de Associação Genética , Hibridização Genética , Fenótipo , Mapeamento Físico do Cromossomo , Simpatria
7.
Front Microbiol ; 10: 860, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156563

RESUMO

There is significant interest in understanding the role of plant growth-promoting rhizobacteria (PGPR) in alleviating different types of plant stress. Schizachyrium scoparium (little bluestem) is a moderately drought tolerant, perennial bunchgrass native to North America. The goal of this experiment was to evaluate whether the addition of a bacterial root isolate in the Pseudomonas genus promoted the growth of S. scoparium with changes in water availability. Pseudomonas are common rhizobacteria and have been shown to improve plant growth. It was hypothesized that plants inoculated with the PGPR strain would have greater growth and health, and would be less affected by shifts in water availability. Pseudomonas strains were isolated from the roots of native S. scoparium plants. After germination, S. scoparium seedlings were subjected to four treatment groups: low water; high water; low water with PGPR; and high water with PGPR. The experiment was run three times with plants at different starting ages; 14-, 28-, and 70-day-old plants. The effects of the water and PGPR treatments were variable between the experimental trials. There were no significant effects of the water treatments on plant growth in Trial 1 (14-day-old plants) or Trial 2 (28-day-old plants), however, there was a significant negative effect of the high watering treatment on the shoot length and biomass in Trial 3. High water availability was significantly associated with greater plant health in Trial 1, but appeared to reduce plant health in Trials 2 and 3. The PGPR treatment appeared to promote root growth and biomass in Trial 2, and was associated with greater plant health in all three trials, especially when paired with the low water treatment. Results from a permutational MANOVA indicate that plant growth was significantly different between the trials due to differences in the starting age of the plants and the duration of the experiments. Thus, methodological choices, such as plant life history stage and experiment duration, may affect the response of plants to PGPR in the rhizosphere. This research provides an insight into the interactions between PGPR and water availability on the growth and health of native plants.

8.
Curr Opin Plant Biol ; 18: 44-50, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24561539

RESUMO

Flowering time and mating system divergence are two of the most common adaptive transitions in plants. We review recent progress toward understanding the genetic basis of these adaptations in new model plant species. For flowering time, we find that individual crosses often reveal a simple genetic basis, but that the loci involved almost always vary within species and across environments, indicating a more complex genetic basis species-wide. Similarly, the transition to self-fertilization is often genetically complex, but this seems to depend on the amount of standing variation and time since species divergence. Recent population genomic studies also raise doubts about the long-term adaptive potential of self-fertilization, providing evidence that purifying selection is less effective in highly selfing species.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Modelos Biológicos , Plantas/genética , Reprodução/genética , Autofertilização/genética
9.
Ecol Evol ; 4(23): 4505-21, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25512847

RESUMO

Flowering time and water-use efficiency (WUE) are two ecological traits that are important for plant drought response. To understand the evolutionary significance of natural genetic variation in flowering time, WUE, and WUE plasticity to drought in Arabidopsis thaliana, we addressed the following questions: (1) How are ecophysiological traits genetically correlated within and between different soil moisture environments? (2) Does terminal drought select for early flowering and drought escape? (3) Is WUE plasticity to drought adaptive and/or costly? We measured a suite of ecophysiological and reproductive traits on 234 spring flowering accessions of A. thaliana grown in well-watered and season-ending soil drying treatments, and quantified patterns of genetic variation, correlation, and selection within each treatment. WUE and flowering time were consistently positively genetically correlated. WUE was correlated with WUE plasticity, but the direction changed between treatments. Selection generally favored early flowering and low WUE, with drought favoring earlier flowering significantly more than well-watered conditions. Selection for lower WUE was marginally stronger under drought. There were no net fitness costs of WUE plasticity. WUE plasticity (per se) was globally neutral, but locally favored under drought. Strong genetic correlation between WUE and flowering time may facilitate the evolution of drought escape, or constrain independent evolution of these traits. Terminal drought favored drought escape in these spring flowering accessions of A. thaliana. WUE plasticity may be favored over completely fixed development in environments with periodic drought.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA